СТРОЕНИЕ АМОРФНЫХ ТВЁРДЫХ ФАЗ ВОДЫ И ЗАХВАТ МОЛЕКУЛ CH_4 , H_2 В МУЛЬТИСТРУКТУРАХ ЛЬДА

<u>Безносюк С.А.*</u>, Пережогин А.А.

Алтайский государственный университет, пр. Ленина 61, Барнаул, 656049 Россия * E-mail: beznosyuk@chemwood.dcn-asu.ru

Введение

В условиях достаточно быстрого охлаждения при Т < 133К вода образует стеклообразные аморфные фазы [1]. В области низких давлений образуется аморфная фаза низкой плотности, а при повышении давления возникает аморфная фаза более высокой плотности. При изменении давления или температуры в аморфных фазах происходят скачки плотности (> 20 %).

Стеклообразные аморфные фазы льда могут представлять интерес для создания на их основе накопителей водородных топлив в виде $\mathrm{CH_4},\ \mathrm{H_2},\ \mathrm{perулируемыx}\ \mathrm{давлением}\ \mathrm{u}$ температурой. Строение криогенных фаз воды, механизмы их превращений, свойства обратимо накапливать метан и водород являются предметом изучения в данной работе.

В рамках новых теоретических концепций термополевой динамики [2] и квантово-полевой химии [3] нами предложены модели строения закалочных криогенных аморфных стекол воды и компьютерным моделированием получены энергетические барьеры транспорта СН₄ и Н₂ внутри их клеточных мультиструктур.

Результаты и обсуждение

Квантово-полевые подходы [2,3] трактуют структуры конденсированных фаз воды как систему мультичастиц воды $(H_2O)_n$. Внутренняя структура каждой такой супермолекулы $(H_2O)_n$ описывается в форме пространственных сеток внутримолекулярных водородных (O-H-O) $\alpha-$ связей. Сетки формируют клеточное строение мультичастиц воды. Стенки клеток образованы кольцевыми фрагментами (O_6H_6) .

Межмолекулярные водородные (O–H----O) β -связи адгезии между мультичастицами (H_2O) $_n$ определяют устойчивость различных фаз воды. Долевое распределение количества водородных α - связей когезии и β -связей адгезии молекул воды определяют строение конденсированных фаз воды. С учётом существование физических γ -связей молекул в газовой фазе воды в рамках термополевой динамики долевые распределения трёх типов связей молекул воды было получено методами

статистической термодинамики с использованием минимизации энергии Гиббса:

$$G(\alpha, \beta, \gamma) = U(\alpha, \beta, \gamma) - \tau \bullet \sigma(\alpha, \beta, \gamma) + p\Omega(\alpha, \beta, \gamma)$$

где $U(\alpha, \beta, \gamma)$ - внутренняя энергия фазы воды, $\sigma(\alpha, \beta, \gamma)$ - её энтропия, $\Omega(\alpha, \beta, \gamma)$ - её объём, p- давление, τ - температура. Заметим, что $\tau = \kappa T, S = \kappa \sigma$, где κ - постоянная Больцмана.

Принимая во внимание $\alpha + \beta + \gamma = n$, где α , β , γ - количество соответствующих типов связей, а n- общее количество связей, в парном приближении внутренняя энергии имеет вид:

$$\begin{split} &U\big(a,\beta,\gamma\big) = N_{_{H_2O}}\varepsilon_{_{H_2O}} + \alpha\varepsilon_{_\alpha} + \beta\varepsilon_{_\beta} + \gamma\varepsilon_{_\gamma} \\ &\text{где } \varepsilon_{_{H_2O}} \text{- энергия молекулы воды, а } \varepsilon_{_\alpha} \,, \; \varepsilon_{_\beta} \,, \\ &\varepsilon_{_\gamma} \text{- энергии соответствующих типов связи.} \end{split}$$

Выражение для энтропии имеет вид:

$$\sigma(\alpha, \beta, \gamma) = \ln \frac{n!}{\alpha! \beta! \gamma!}$$

Для идеальных растворов, объём фазы воды представим в аддитивном виде:

$$\Omega(\alpha,\beta,\gamma) = N_{H_{2}O}\Omega_{H_{2}O} + \alpha\Omega_{\alpha} + \beta\Omega_{\beta} + \gamma\Omega_{\gamma}$$
 где $\Omega_{H_{2}O}$ - объём отдельной молекулы воды, а Ω_{α} , Ω_{β} , Ω_{γ} - объёмы молекул , приходящиеся на соответствующие типы связи.

Энергии α —связей и β —связей, усредненные по различным рассчитанным мультиструктурам воды, составили: $\epsilon_{\alpha} \sim$ -32 кДж/моль, и $\epsilon_{\beta} \sim$ -26 кДж/моль, соответственно. Согласно нашему расчёту для температуры T=133К и давлении $P=5~10^8$ Па равновесное долевое распределение водородных α —связей когезии и β —связей адгезии в твёрдой аморфной фазе составило: $\nu_{\alpha}=99,47\%,~\nu_{\beta}=0,53\%.~$ В тоже время при температуре T=273К и $P=10^5$ Па в жидкой воде доля β —связей адгезии между молекулами воды увеличивается: $\nu_{\alpha}=91,8\%,~\nu_{\beta}=8,2\%.$

Средние размеры компактных мультичастиц $(H_2O)_n$ в криогенной плотной фазе составляет: $L\sim18$ нм, что соответствует $n\sim10^5$ молекул воды. В другой фазе, полученной из жидкой воды, при нормальных условиях средний размер $(H_2O)_n$ $L\sim0.9$ нм, что соответствует примерно $n\sim30$. Эти различия в размерах компактных мультичастиц объясняют наблюдаемые скачки плотности.

Транспорт молекул CH_4 и H_2 через клеточные сетки воды блокируется барьерами, лежащими в направлении оси кольца (O_6H_6) клетки. Между стенками клетки воды и молекулами топлива действуют силы межмолекулярной адгезии. Потенциальная энергия адгезии рассчитывалась методом функционала плотности [3].

Потенциальные кривые транспорта для CH_4 и H_2 через кольцо (O_6H_6) показаны на рис. 1, 2.

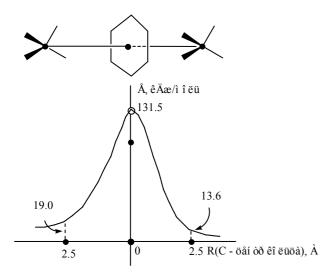


Рис. 1. Потенциальная кривая прохождения CH_4 через циклический фрагмент (O_6H_6).

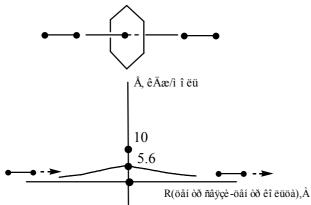


Рис. 2. Потенциальная кривая прохождения H_2 через циклический фрагмент (O_6H_6).

В случае переноса метана через циклический фрагмент барьер высок (132 кДж/моль). Для H_2 барьер очень мал (6 кДж/моль). В случае метана барьер связан с силами отталкивания атомов Н от кольца при попытке пройти через него. Во втором случае барьер отталкивания слаб из-за большой удаленности между атомами водорода и атомами кольца.

Выводы

На основе вышеизложенных расчётов ясно, что энергетический барьер переноса молекулы водорода через клеточную мультиструктуру воды лежит значительно ниже аналогичных барьеров CH_4 . Это обуславливает эффективный механизм переноса H_2 в фазах воды. Перенос молекул метана внутри упорядоченных клеток мультиструктур воды мал, так как они заперты внутри клеток воды $(H_2O)_n$. Поэтому следует ожидать, что стеклообразные аморфные фазы льда могут представлять интерес для создания на их основе накопителей CH_4 .

Как показали наши расчёты существенное различие в размерах компактных мультичастиц $(H_2O)_n$ в плотной и рыхлой аморфных фазах льда позволяет менять долю накопления метана внутри мультичастиц. В плотной аморфной фазе молекулы воды собраны в десятки раз большие по размерам наночастицы.

Механизмы скачков их плотности позволяют обратимо накапливать CH_4 внутри клеточных структур мультичастиц воды. При этом степень накопления можно регулировать давлением и температурой.

Литература

- 1. Головин Ю.И. Вода и лёд знаем мы о них достаточно? Соровский образовательный журнал 2000;(9):66-72.
- 2. Umezawa H., Matsumoto H., Tachiki M. Thermo field dynamics and condensed states. Amsterdam New-York Oxford: North-Holland Publishing Company, 1982.
- 3. Beznosyuk S.A. Modern quantum theory and computer simulation in nanotechnologies: Quantum topology approaches to kinematical and dynamical structures of self-assembling processes. Materials Science & Engineering C 2002;19 (1-2):369-372.