INTERACTION MECHANISM OF THE HYDROGENATION COMPOUND TIAL WITH OXYGEN

Chuprina V.G., Shalya I.M.

Frantsevich Institute for Problems of Material Science of NASU, 3 Krzizanovsky St, Kiev, 03142, Ukraine

The change of the state of surface of the TiAl compound after its interaction with the area oxygen under 500-900 °C was studied.

X-ray layer-by-layer phase analysis of the oxidation products was carried out. For this purpose from the homogenized TiAl ingot the columns with the ~1 mm diameter were made, then oxidized on the area and roentgenographed in the Debay-type camera (cassete diameter 150 mm) in the copper radiation. The X-ray investigation of the oxidized surface and also after the removal of the outside layer of certain thickness (Δ d) were taken. After oxidation during the first hours under 500-600°C on the X-ray filme cjresponding to the oxidized surfase the strong alloy lines and week reflections of

 γ -Al₂O₃ fixed. With the rizing of temperature and the oxidation time the α -Al₂O₃ and TiO₂ (rutile) lines are present on the X-ray films.

Some results of the X-ray phase analysis of the interaction products of TiAl with oxigen formed during 10 hours under 800 fnd 900 °C are represented on the table. There are values of $\sin^2 \theta$ of the main lines (θ - Bregg's angle) and their corresponding intensiveness I/I $_0$. In the last column the reflection indexes (hkl) of the phases that may correspond them / 1 /are indicatted. Wide lines are marked as "w", and alloy lines as "al".

After the oxidation. under 800°C (τ =10 hours) the scale consisting with α - Al_2O_3 and TiO_2 breaks off. With the rise of the temperature up to 900 °C the interaction mechanism changes. The dense scale forms, in external layer (Δd =0) Ti_2O_3 appears (see the table). The same was observed also during TiNi [2] oxidation. This can be explained by the appearance of Ti^{4+} diffusion in the rutile latice, that leads not only to the increase of the rate constant of the parabolic oxidation, but also to the sintering of the scale.

Conclusions

- 1. Intermetallic compaund TiAl interacts with oxygen poorly under 500-600 °C.
- 2. Under $t \ge 800$ °C Ti⁴⁺ diffusion to the external surface of the scale promotes the increase of the oxidation rate and the scale sintering.

References

- 1. Index to the X-ray powder data film.-Philadelfia: Amer. Soc. Test. Mat., 1972.
- 2. Chuprina V.G. Study of the Titanium Nickelide Oxidation Process.II.Phase Composition of scale. Powder Metallurgy, 1989, №6, 57-61.

Table

800°C	τ=10 h		900°C	τ=10 h		hkl
$\Delta d = 0$		$\Delta d = 0$		$\Delta d = 0$		фаза
$Sin^2\theta$	I/I_0	$Sin^2\theta$	I/I_0	$Sin^2\theta$	I/I_0	•
-	_	0,0465	2	-	_	102-Ti_2O_3
0,0491	1	0,0490	1	-	-	$102-\alpha-Al_2O_3$
0,0566	10	0,0569	6	0,0570	3	$110-TiO_2$
-	_	0,0813	1	-	-	$110-\alpha-Al_2O_3$
0,0916	2	0,0917	1w	0,0915	1	$014-Al_2O_3$
,		,		,		$,104-Ti_{2}O_{3}$
0,0966	8	0,0967	4	0,0970	1	001-TiO ₂
0,1049	1	0,1053	1	-	-	$110-\alpha-Al_2O_3$
-	_	_	-	0,1096	5w	al
0,1122	2	0,1125	1	-	-	020-TiO ₂
0,1247	6	0,1224	7	-	-	111-TiO ₂
-	-	_	-	0,1252	6	al
-	-	0,1324	1	-	-	Ti_2O_3
0,1358	2w	0,1365	2	0,1360	3	$113-\alpha-Al_2O_3$
0,1402	2	0,1411	1	-	-	210-TiO_2
-	-	0,1704	2	-	-	$024-Ti_2O_3$
0,1961	2	0,1963	1	-	-	$204-\alpha-Al_2O_3$
-	-	-	-	0,2042	5	al
0,2092	10	0,2086	9w	0,2081	4	121-TiO ₂ , 122-
						Ti_2O_3
0,2256	5	0,2253	3	0,2248	1	$220-TiO_2$
0,2309	3	0,2317	2	0,2305	1	$116-\alpha-Al_2O_3$
-	-	0,2640	1	-	-	$030-Ti_2O_3$
0,2725	3	0,2740	2w	0,2710	1	022-TiO ₂ , 214-
						Ti_2O_3