КИНЕТИКА ВЗАИМОДЕЙСТВИЯ С КИСЛОРОДОМ ВОДОРОДОПОГЛОЩАЮЩЕГО СПЛАВА TIAL

Чуприна В.Г., Шаля И.М.

Институт проблем материаловедения им. И.Н. Францевича НАНУ, ул. Кржижановского, 3, Киев, 03142, Украина


Взаимодействие с кислородом воздуха соединения TiAl изучали в интервале 500- 900 °C с применением гравиметрической методики. Сплав выплавляли в дуговой печи, в атмосфере аргона и гомогенизировали при 1000°C в течение 70 часов. Определяли окисляемость $q = \Delta P / S$, где ΔP - привес образца в мг, S- его исходная площадь поверхности в см². При низких температурах и начальных стадиях взаимодействие с кислородом протекает в кинетическом режиме, контролируется процессами оксидообразования и описывается временным линейным законом. Параболическое окисление наступает после формирования сплошного оксидного слоя ($t \ge 600$ °C) и описывается уравнением $q^2 = K_p \tau$, где K_p параболического константа скорости окисления.

Характерной особенностью параболического окисления является скачкообразное уменьшение K_p (600-800 0 C) или ее увеличение (850-900 0 C). Первое свидетельствует об отслоении, а второе -о спекании окалины.

При низких температурах наблюдается слабое взаимодействие TiAl с кислородом. Так, после шести часов выдержки при 500° C q = 0.01 мг/см^2 , а при 600° C значение окисляемости не превышает 0.07 мг/см^2 . С повышением температуры от $800 \text{ до } 900^{\circ}$ C q резко возрастает (рисунок). Подобное наблюдали и в случае окисления соединения TiNi /1/.

Представляло интерес сравнить окисляемость TiAl с окисляемостями таких водородопоглощающих соединений, как TiFe /2/, ZrNi /3/ и TiNi /1/. В таблице 2 представлены отношения окисляемостей TiFe (q₁), ZrNi (q₂) и TiNi (q₃) к окисляемости TiAl(q). Во всех TiNi окисляемость оказывается большей, чем у TiAl в 2-3 раза. При этом q₃/q заметно не зависит от режимов окисления, что может свидетельствовать о том, что механизмы взаимодействия с кислородом соединений TiNi и TiAl одинаковы.

Значительно в большей степени отличаются окисляемость TiFe и ZrNi по сравнению с окисляемостью TiAl. К тому же, как q_1/q , так и q_2/q зависят от режимов окисления (табл.2). Это обусловлено различием в кинетике окисления TiFe [2], ZrNi [3] и TiAl.

Зависимость окисляемости q,мг/см 2 от температуры (t°C): 1 - после 2(1) и 6(2) часов окисления

Таблица 1

t, °C	\mathbf{K}_1	K_2
700	0,07	0,18
800	0,06	0,15
850	0,46	0,28
900	3,2	0,75

Выводы

Таблица 2			
т, час	q_1/q	q_2/q	q_3/q
700 °C			
2	22,4	41,6	2,32
4	23,5	40,0	2,94
6	21,4	35,7	3,19
800 °C			
2	34,0	21,0	3,1
4	33,9	20,7	3,8
6	23,0	11,9	2,8
850 °C			
2	16,6	6,3	2,3

15,9

15,2

9.7

10,6

12,3

4,4

4,0

2,19

2,3

2,5

2,0

2,0

1,8

2,4

2,9

4

6

900 °C

4

6

- 1. При низких температурах TiAl слабо взаимодействует с кислородом.
- 2. В ряду водородосодержащих соединений TiFe, ZrNi, TiNi и TiAl последний (TiAl) оказывает наибольшее сопротивление окислению.

Литература

- 1. Чуприна В.Г.. Изучение процесса окисления никилида титана. І.Кинетика., Порошк.метал., 1989, №4, 75-80
- 2. Чуприна В.Г, Шаля И.М, Зенков В.С. Взаимодействие с кислородом водородо-поглощающего интерметаллида ТiFe/ П.Кинетика окисления ТiFe на воздухе. Порошк.метал., 1995, №9/10, 64-67.
- 3. Чуприна В.Г, Шаля И.М. Процессы окисления сплавов системы Ni-Zr. III.Окисление NiZr., Порошк.метал, 2004, № 9/10, 77-86.