ПРОНИЦАЕМОСТЬ ВОДОРОДА ЧЕРЕЗ МЕТАЛЛЫ: ТЕОРИЯ И ЭКСПЕРИМЕНТ

<u>Примаков Н.Г*.</u>, Казарников В.В., Руденко В.А.

Государственный научный центр Российской Федерации Физико-Энергетический Институт им. А.И. Лейпунского

> пл. Бондаренко 1, Обнинск, 249033 Россия *Факс: (08439) 9-85-82, E-mail:konobeev@ippe.ru

Введение

Изучение параметров проницаемости изотопов водорода через металлы представляет большой практический интерес, как для науки, так и для предсказания поведения материалов в установках типа ITER.

Однако при экспериментальном получении обработке данных по проницаемости водорода и трития встречается довольно много явлений, трудно поддающихся объяснению. Так, например, показано, что при изучении зависимости проницаемости металлов для рассматриваемых газов от давления P_0 на входной стороне мембран (при нахождении выходной стороны В вакууме $P_{\rm shr}=0$) наблюдаются отклонения от теоретической предложенной зависимости потока, Ричардсоном с соавторами [1]:

$$J_{m} = \frac{F\eta}{\delta} \cdot \left(\sqrt{P_{0}} - \sqrt{P_{\text{\tiny obl}X}} \right), \tag{1}$$

где J_m – поток газа через мембрану, P_0 и $P_{\rm shix}$ – давление водорода на входной и выходной сторонах мембраны, соответственно, $\eta = DS$ проницаемость материала для данного вида газа при $P_0 = 1$ атм. при $P_{\text{вых}} = 0; F$ - площадь мембраны, S - растворимость газа в металле при давлении газа, равном 1 атм; D коэффициент диффузии газа в металле; δ толщина мембраны.

Особенно заметны отклонения в уравнении (1) зависимости от P_0 и δ при низких давлениях водорода на входной стороне мембраны. Для описания этих отклонений в литературе приводятся эмпирические формулы [2], а также и феноменологическое описание этих явлений. Однако реального физического процесса,

приводящего к подобным отклонениям, на наш взгляд, до сих пор не найдено.

В настоящей работе сделана попытка объяснить большую часть наблюдающихся отклонений в величинах $J_{u_{3M}}$ от J_m тем, что вакуумные трубопроводы, и трубопроводы,

подводящие газ к изучаемому материалу, являются фактически газовыми мембранами, соединенными последовательно с изучаемой.

Вывод уравнения потока водорода через мембрану

Рассмотрим измерение проницаемости через мембрану, газ к которой подводится слева по трубке 1 и отводится по трубке 2 справа (см. рис. 1). Пусть на входе в трубку 1 давление газа равно P_0 , на входной поверхности мембраны давление равно P_{I} , с выходной стороны мембраны давление равно P_2 и на выходе из трубки 2 давление равно P_{sux} = Предположим, что измерения ведутся установившемся режиме. Тогда поток газа будет в любом сечении одинаковым (см. рис.1), и равен измеряемому $J_{u_{3M}}$.

$$J_{u_{3M}} = J_1 = J_M = J_2. \tag{2}$$

$$\delta \sqrt{P_0} - \sqrt{P_1} \longrightarrow D$$

Рис.1. Схема определения проницаемости водорода через мембрану, J_1 , J_2 и J_m – потоки газа через трубки 1 и 2 и мембрану, соответственно, U_1 , U_2 – проводимости трубок 1 и 2.

Из уравнения (2) можно получить связь между параметрами системы: η , δ , P_0 , U_1 u U_2

$$P_0 = AJ_{u_{3M}}^2 + BJ_{u_{3M}}^{3/2} + CJ_{u_{3M}}, (3)$$

$$A = \left(\frac{\delta}{\eta F}\right)^2, \quad B = \frac{2\delta}{\eta F \sqrt{U_2}}, \quad C = \frac{\left(U_1 + U_2\right)}{U_1 \cdot U_2}.$$

Из уравнения (3) следует, что только в случае если $U_1 \rightarrow \infty$ и $U_2 \rightarrow \infty$ измеренное значение $J_{u_{3M}}$ соответствует его истинному значению, т.к. в этом случае $A \to 0$ и $B \to 0$ и

$$J_{u_{3M}} \approx \frac{\eta F}{\delta} \sqrt{P_0} \tag{4}$$

в соответствии с уравнением Ричардсона [1].

Обсуждение результатов

качестве примера применимости выведенных выше уравнений к анализу данных по проницаемости рассмотрим результаты измерения зависимости потока водорода от давления на входной стороне через ниобий [3] (рис.2а), а также зависимость потока водорода давлении при постоянном от толшины мембраны никеля (рис. 2б). Из рисунков 2а и 26 видно, что ни в одном случае не наблюдается линейной зависимости ни корня из давления (рис. 2а), ни от обратной величины толщины мембраны (рис. 2б), что не согласуется с уравнением (1) Ричардсона.

Обработка вышеприведенных данных по уравнению (3) показала, что для ниобия $1/U_I$ =0, $1/U_2$ ≠0 и, следовательно, ограничение потока, ответственного за нелинейный ход зависимости на рис.2а, осуществляется на выходной стороне мембраны, а для никеля (рис.2б) $-1/U_2$ =0 и $1/U_I$ ≠0, т.е. поток водорода ограничен на входной стороне мембраны. Анализ уравнения (3) показывает, что для ниобия, в случае (U_I → ∞), зависимость (рис. 2а) должна спрямляться в координатах:

$$\frac{\sqrt{P_0}}{J_{_{HEM}}} = f(\frac{1}{\sqrt{J_{_{HEM}}}}), \qquad (4)$$

а для никеля при $U_2 \to \infty$ в координатах:

1.4x10

$$\frac{P_{\scriptscriptstyle 0}}{J_{\scriptscriptstyle \dots}} = f(J_{\scriptscriptstyle uxm}). \tag{5}$$

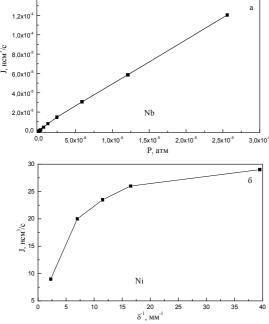


Рис.2. Зависимость потока водорода через Nb от давления (а) и через Ni от толщины мембраны (б) по данным [3] и [2], соответственно.

Эти зависимости приведены на рис. За и 36, из которых видно, что в обоих случаях линейные соотношения выполняются достаточно хорошо.

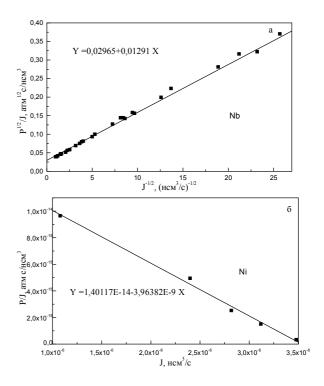


Рис.3. Зависимость потока водорода через Nb (a) и через Ni (б) в координатах уравнений (4) и (5), соответственно.

Выводы

Предложена методика определения стороны мембраны (входной или выходной), ответственной за отклонение от закона Ричардсона при определении проницаемости водорода через металлы и сплавы.

Литература

- 1. Richardson O.N., Nicol J., Parnell T., The diffusion of hydrogen through hot platinum // Phil. Mag., 1904, v.8, p.1.
- 2. Гельд П.В., Рябов В.А., Водород в металлах и сплавах, М.: Металлургия, 1974. 3. Yamawaki M., Namba M., Kiyoshi T., Kanno M. Surface effects on hydrogen permeation through niobium. JNM, v.122&123, (1984), p.1573.