ПОЛУЧЕНИЕ ВОДОРОДА ПУТЕМ ЧАСТИЧНОГО ОКИСЛЕНИЯ МЕТАНА В ВОЛНЕ ФИЛЬТРАЦИОННОГО ГОРЕНИЯ

<u>Дмитренко Ю.М.*</u>, Клёван Р.А., Минкина В.Г., Жданок С.А.

Институт тепло- и массообмена им. А.В. Лыкова НАН Беларуси, ул. П. Бровки 15, Минск, 220072 Беларусь

^{*} Факс: 375(17)-284-22-12 E-mail: dyum@itmo.by

Введение

Для перспективных энергоустановок на базе водородных топливных элементов нужны эффективные и компактные устройства получения водорода. К их числу относятся устройства для конверсии углеводородов, и в частности, природного газа или метана. Известны различные технологии конверсии природного газа: каталитическая или некаталитическая паровая конверсия, пиролиз и частичное окисление.

В ряде исследований [1-5] показано, что в волне фильтрационного горения ($\Phi\Gamma$) можно получать водород путем частичного окисления углеводородов без внешнего подогрева реакционной зоны и дорогостоящего и подверженного загрязнению катализатора. В этом процессе необходимая температура достигается за счет "сверхадиабатического эффекта" волны $\Phi\Gamma$. Эффективность конверсии метана в водород в такой системе определяется максимальной температурой в волне $\Phi\Gamma$, которая увеличивается с ростом удельного расхода \mathbf{g} рабочей топливной смеси [2,3].

В данной работе приводятся результаты исследований, проведенных в более широких диапазонах эквивалентного отношения γ и g для установления оптимального режима конверсии метана в волне фильтрационного горения. Полученные результаты предполагается использовать также для усовершенствования численной модели волны $\Phi\Gamma$. В настоящее время есть все основания предполагать, что хорошо известные кинетические модели Коnnov, GRI, Miller-Bowman, Frenklach, Warnatz не вполне адекватны в случае частичного окисления. Одной из вероятных причин такого несоответствия является влияние гетерогенных реакций на поверхности частиц засыпки.

Экспериментальное оборудование

Экспериментальная установка включает реактор фильтрационного горения, блок начального подогрева реактора, приборы регулирования расхода газов, автоматизированные системы измерения температуры и состава газов.

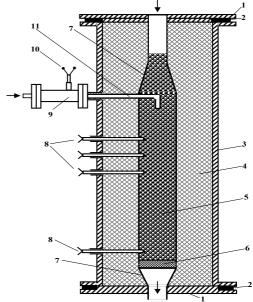


Рис. 1. Схема экспериментальной установки 1-фланцы, 2-уплотнение, 3-корпус, 4-тепло-изоляция, 5-керамическая засыпка, 6-пористый керамический диск, 7-кварцеый конус, 8-термопары, 9-блок подогрева, 10-свеча зажигания, 11-кварцевая трубка.

Корпус реактора диаметром 140 мм и толщиной стенок 6 мм (Рис. 1) изготовлен из нержавеющей стали. Зона реакции заполнена шариками диаметром 5-6 мм из окиси алюминия. Пространство вокруг засыпки заполнено изоляцией из прессованной каолиновой ваты. Имеется блок начального подогрева засыпки для запуска реактора в виде горелки фильтрационного горения, работающей на метановоздушной смеси. Воздух и метан поступают из магистрали высокого давления и стандартного баллона. Расходы газов контролируются электронными регуляторами массового расхода фирмы "Omega".

Распределение температуры вдоль реактора измерялось термопарами S-типа с открытым спаем, сигналы которых обрабатывались автоматизированной системой на базе ПК.

Состав продуктов реакции анализировался модифицированным газовым хроматографом. Chrom-4 с цифровой обработкой данных.

Результаты и обсуждение

Выполненное исследование показывает, что эффективность конверсии метана в водород в сверхадиабатической волне фильтрационного горения напрямую связана с максимальной температурой в пористой засыпке реактора.. Зависимость максимальной температуры от удельного расхода **g** и эквивалентного отношения **у** рабочей смеси показана на Puc.2..

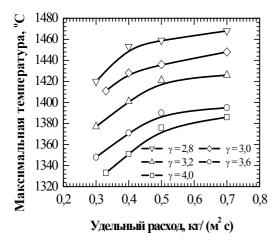


Рис. 2. Влияние эквивалентного отношения и массового расхода на максимальную температуру в пористой засыпке

Для всех значений γ наблюдается четкая тенденция к росту максимальной температуры с ростом ${\bf g}$, особенно для ${\bf g}<0,6$. Эта тенденция согласуется с результатами наших предыдущих исследований для $\gamma=4$ [3]. На Рис.3 и Рис.4. приведены параметры, характеризующие эффективность процесса конверсии метана в водород: концентрация остаточного метана в продуктах конверсии и степень конверсии.

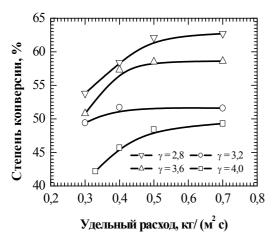


Рис. 3. Степень конверсии метана

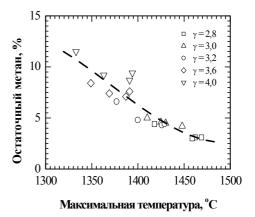


Рис. 4. Концентрация остаточного метана

Выводы

Частичное окисление метана может быть осуществлено в волне $\Phi\Gamma$ в инертной пористой среде. Наиболее эффективно данный процесс конверсии протекает для $\gamma \approx 2,8$ -3. Максимальная степень конверсии метана в водород составляет приблизительно 63%. Одно из достоинств данного процесса состоит в том, он протекает без образования сажи.

Литература

- 1. Drayton M.K., Saveliev A.V., Kennedy L.A., Fridman A.A., Li Y. Syngas production using superadiabatic combustion of ultra-rich methane-air mixtures. 27th Sym. on Combustion. The Combustion Institute, 1998. p. 1361-1367.
- 2. Гаврилюк В.В., Дмитренко Ю.М., Жданок С.А., Минкина В.Г., Шабуня С.И., Ядревская Н.Л., Якимович А.Д. Исследование процесса конверсии метана в водород в условиях сверхадиабатического фильтрационного горения. Теоретические основы химической технологии. 2001;35(6):627-635.
- 3. Гаврилюк В.В., Дмитренко Ю.М., Жданок С.А., Минкина В.Г., Шабуня С.И., Ядревская Н.Л., Якимович А.Д. Исследование процесса конверсии метана в водород в режиме одиночной волны фильтрационного горения. Труды IV Международного форума по тепло- и массообмену, Минск, 2000;4:21-31.
- 4. Kennedy L.A., Bingue J.P., Saveliev A.V., Fridman A.A., Foutko S.I. Chemical structures of methane-air filtration combustion waves for fuellean and fuel-rich conditions. Proceedings of Combustion Institute, 2000, 28:1431-1438.
- 5. Bingue J.P., Saveliev A.V., Fridman A.A., Kennedy L.A. Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. Int. J. Hydrogen Energy 2002;27:643-649.