CONCENTRATING OF ENERGY EXESS ELECTRONS ON CARBON MATERIALS

Rogoviκ V, Tyupalo N.

Institute of chemical technology and industrial ecology, Rubegnoe, Ukraine Technological institute of East-Ukrainian national University of a name V. Daliy, Severodonetsk, Ukraine

By chemical properties the hydrogen partially reminds properties of metals, but simultaneously in this respect it is close to exess electron - to an elementary particle. Probably, in the long term it is possible to expect the invention of methods of reception of hydrogen at the expense of transformation of energy exess electrons in energy of chemical bonds in a molecular hydrogen. It causes interest to methods concentrating of energy exess electrons. In engineering are known electrets and electrostatic amplifier of Van-de-Graaf, which can be considered as concentrators and depositors exess electrons. In a nature is present unsurpassed on volume and capacity depositors of energy exess electrons - lithosphere of the Earth. Here, apparently, at the expense of energy exess electrons processes of reduction of water up to hydrogen, carbonates up to hydrocarbons, sulphates up to hydrogen sulphide and so on also proceed.

By us is found a new method generating and concentrating energy and charges exess electrons, consisting in passing of a flow superheated water pair or others warmed up of polar gases above a surface of the structured carbon materials. In this method by the donors electrons act monomeral polar molecules of water (or polar gases), and as an acceptors - structured two or three-dimensional thermostabilitical high-resistance carbon materials.

Most effective acceptors exess electrons, most likely, are fullerens [1], but ability to divide and to keep charges is inherent both other more simple and accessible substances. By us is found, that on a surface two-dimensional of organic pigments of aromatic character in the jet of superheated water pair has a place seperation of charges under the known laws of formation of a static electricity. The negative electrical charges thus concentrate on a surface of pigments, and the positive ions are carried away by a jet pair for limits of a processable zone. The adsorbed oxygen, and also the oxygencontaining substituent, halogens fixed with an aromatic nucleus and some other functional groups are displaced by exess electrons, i.e. they are exposed to reduction. During reduction and after displacement of these substituends the seperation of charges proceeds at the expense of low electroconductivity of superheated pair, exess electrons form on acceptors powerful blob of energy |2|.

If in tube, where the treatment of a sample is conducted to place two metal electrodes (first, for example, as small boat for an studied sample, and second - as a grid for catching ions) and to close them in an electrical circuit, on a mark and size of arising potential it is possible to judge character of chemical and physical processes in a researched sample.

At the fixed meanings of temperature (about 370°C), pressure and speed of a flow superheated pair (20 g/h) above a surface of a phtalcyanine pigment Blue 15 in weight 1,5 g for 1 hour energy accumulating whith causes its ignition at contact to air.

Taking into account known analogy in wave properties electron and photon, that will be coordinated with point of view R. Feinman, we offer to consider a phtalcyanine pigment as depositor of energy exess electrons. It is known, that chlorofill in green plants is unsurpassed depositor of energy of solar light. In a basis of its molecular structure, as well as in a basis of structure of the pigment, investigated by us, lays a flat porfinical aromatic (two-dimensional) fragment having labilical π electronic system. The similarity of these molecular structures causes ability in both cases to transform wave energy into energy of chemical bonds. The oxygen is served by «the change coin», and chlorofill splits out it from water and carbonic gas, and pigment - from various materials: water, carbonates, sulphates and i. e. It is important, that chlorofill and pigment have ability to deposit wave energy and to accumulate it up to a level, sufficient for transformation into energy of chemical bonds.

The processes of such type are widely distributed in a nature and engineering: the soot ignites and blows up in household and industrial flues, the mountain carbon-contained breeds of terricons and erupted, melted down by volcanos are warmed up and are ignited, the solid mineral fuel ignites also[3]. Earlier [4, 5] by us it is offered to use processes of concentrating of energy exess electrons and relaxation this energy out from depositors for reception of the electric power onboard, for example, automobile at the expense of thermal and kinetic energy of exhaust gases.

About a terminology. If the blobs of energy photons on chlorofill are exitons, then to blobs of

energy and charges exess electrons on depositors earlier by us are offered to give the name «thermoexitons» [2]. In process concentrating of electrons on depositor and their relaxation electrical «thermoexitonal» currents occures. Essentially, the depositors are as catalysts of transformation of wave into energy of chemical bond or other forms of energy.

The basic purpose of the present message is the development of the conception of technology of reception of molecular hydrogen at the expense of energy exess electrons. Naturally, that concentrating of energy is the most important aspect of this problem. The fact of a concentrating of the mononame charges in the limited space nanostructure, on the first sight, contradicts the law of Culon. Nevertheless both in experiment, and in natural conditions the concentrating electrons has a place, and high energysaturation of thermoexitons testifies that in nanospace the anticulon's character forces work.

Probably, the hypothesis about trailing (one-electronic) bonds [6] can solve this contradiction. The trailing bonds is intense, but the sizes nanopores do not allow some molecules, for example oxygen, to penetrate there and to remove a stress. Only electron can to penetrate in nanospace free, and it has position on trailing bond and transforms trailing bond in ordinary sp² - bond. Thus, exess electron assumes the function of atom of hydrogen, owing to what the level of potential energy of claster is lowered.

This effect, and in particular at the account singlet-triplet interactions of trailing bond with exess electron, influences power balance in claster and can affect other properties of system. Nevertheless, the exess electron which has its position on trailing bond in nanospace, keeps ability to tunneling, i.e. it can be pulled out for limits nanospace. Just it is a hypothesis, by us are offered explaining formation and destruction thermoexitons. The measurement thermoexitonal's currents shows, that their stability essentially depends on a nature of depositor of electrons and level them concentrating.

For reception of hydrogen by a way to split out of oxygen from a molecule of water with use exess electron it is necessary to analyse feature of interaction of major factors of transformations in lithosphere: diffusional, kinetic and thermodynamic. Mobile exess electron penetrates through any barrier, the catalyst - molecule or claster does not meet yet. Here it loses a part of energy and forms thermoexitons of the first order. The increase of its order and increase of energy can proceed by absorption others wandering electrons.

The fastening of molecules of water can occur on a surface carbon claster at the expense of the same trailing bonds. Water have a position on a carbon material by atoms of hydrogen. In such situation energy of bond of oxygen - the hydrogen is polarized and so is weakened, that becomes to possible transition electrons from thermoexiton on oxygen, that in the end and as results a molecule of hydrogen splits out.

Literature

- 1. Арапов О. В., Пронкин А. А., Чариков Н.А., Серегин В. И., Стрельников К.Б. ЖПХ, 2003, т.76, в.1, стр.39 45.
- 2. Роговик В.Й. Енергія статичних зарядів задля блага людини. Сборник науч. трудов 12 (ежегодной) международной научно-технической конференции, 7-11 июня 2004, г. Бердянск. Том 1, стр. 162-165, Харьков 2004.
- 3. Саранчук В.И., Русчев Д., Семененко В.К., Галушко Л.Я., Маркова К., Пащенко Л.В., Темерова Г.П. Окисление и самовозгорание твердого топлива, К.: «Наукова думка», 1994.
- 4. Роговик В.Й., ВАТ «Концерн Стирол», Патент України №45719А. Спосіб та пристрій для одержання електричного струму, Заява № 2001064077, дата опубл. 15.04.2002 Бюл.№ 4
- 5. Роговик В.И.,ОАО «Концерн Стирол», Способ и устройство для получения электрического тока, Решение о выдаче патента на изобретение России № 2001135893/09 (037830).
- 6. Раков Э.Г. Химия и применение нанотрубок, Усп. хим., т. 70., в.10, стр., 935, 2001.