КАТАЛИТИЧЕСКИЙ РЕАКТОР ЧАСТИЧНОГО ОКИСЛЕНИЯ МЕТАНА РЕВЕРСИВНОГО ДЕЙСТВИЯ

Жданок С.А., Гаврилюк В.В., <u>Калинин В.И.,</u> Буяков И.Ф., Додь А.И., Пацко О.А.⁽¹⁾

Институт тепло- и массообмена им. А.В. Лыкова НАН Беларуси, Минск, Беларусь ⁽¹⁾ Объединенный институт проблем информатики НАН Беларуси

Введение

Разработана конструкция реактора частичного окисления метана, который действует в режиме периодического реверсивного изменения направления потока рабочей газовой смеси. Достигнута задача стабильной работы реактора при нормальном и повышенном (до 10 атм) давлении. Рабочие параметры реактора оптимизированы для получения максимального выхода водорода.

Экспериментальная установка

В системе подготовки исходной реакционной смеси использованы регуляторы расхода фирмы TYLAN. Схема экспериментальной установки представлена на рис. 1. Длина корпуса реактора - 250 мм.

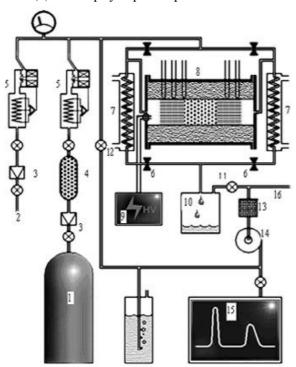


Рис. 1. Экспериментальная установка: 1 — метановый баллон, 2 — сжатый воздух, 5 - регулятор расхода газового потока ТУLAN2900, 8 — реактор, 9 — устройство поджига, 15 - зоанализатор, 16 — выход продуктов.

Оптимизация параметров позволила сократить габариты, перейти на большие давления и уменьшить время разогрева реактора. Модернизация структуры пористого рабочего тела реактора позволила стабилизировать положение зоны тепловыделения на краю каталитического слоя.

Согласно термодинамическим расчетам, для 95 % конверсии метана в водород при атмосферном давлении достаточна температура в 750 °C, в то время как при 10 атм требуемая температура приближается 1000 Увеличение температуры требует термостойкого использования никелевого катализатора. Все описываемые эксперименты были проведены на реакторах с инертной засыпкой из кварца и каталитическим слоем из никелевого катализатора на субстрате из окиси алюминия.

Основные результаты эксперимента

Работа конвертора определяется свойствами и геометрией рабочего тела, расходом и составом реакционной смеси. Важнейшей для пользователя характеристикой является выход целевого продукта реакции водорода. Существенной чертой и одним из достоинств используемой конструкции является то, что конвертор не требует внешнего энергии. Это обеспечивает подвода выгодные экономические характеристики и быстрый выход на режим.

На рис. 2 приведена последовательность температурных профилей в реакторе с слоем длиной инертным 80 мм, давлении 10 атм и удельном расходе смеси $\kappa \Gamma / M^2 c$. 0.26 Представленные профили соответствуют моменту переключения направления газового потока (0s) и далее с интервалом через каждые 10 секунд. Рисунок демонстрирует процесс формирования зоны реакции в инертном слое. Рост температуры возможен только до точки воспламенения смеси в некаталитическом слое.

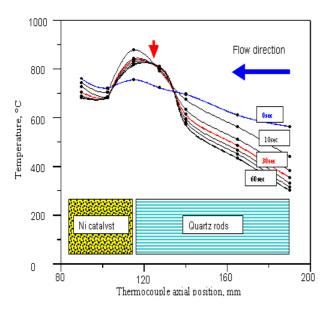


Рис. 2. Смещение зоны воспламенения в инертный слой. Зона воспламенения обозначена вертикальной стрелкой. Длина инертного слоя - 80 мм, давление - 10 атм, расход газовой смеси- 3нм³/ч.

Аналогичное явление наблюдается при увеличении расхода газовой смеси через реактор, что обуславливает рост выделения энергии и приводит к повышению температуры процесса и степени конверсии а. Влияние удельного расхода газовой смеси при 10 атм показано на рис.3. С его увеличением

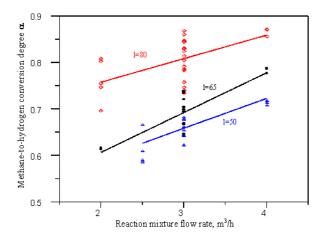


Рис. 3. Влияние расхода газовой смеси на степень конверсии для инертного слоя с различной длиной.

возрастают теплопотери из пористой среды реактора, но этот процесс более медленный, чем рост удельного энерговыделения.

Выводы

Наиболее важным достигнутым на данный момент результатом является стабильная работа гибридного реактора при давлении 10 атм. Еще более важным является тот факт, что процесс конверсии метана в водород не сопровождается заметным сажеобразованием. Это обеспечивается отсутствием перегрева реакционной смеси, а также высокой скоростью нагрева реагентов и закалки продуктов в использованной конструкции реактора.