АКТИВИРОВАННЫЕ УГЛЕРОДНЫЕ МАТЕРИАЛЫ И АДСОРБЦИОННОЕ ХРАНЕНИЕ ВОДОРОДА

Канончик Л. Е.,* Кулаков А. Г., Васильев Л. Л.

ГНУ «Институт тепло-и массообмена им. А. В. Лыкова» НАН Беларуси, П. Бровки, 15, 220072, Минск, Беларусь *Тел: (375-17) 284-22-23; E-mail: kanon@hmti.ac.by

Введение

Водород является идеальной альтернативой традиционным видам горючего, таким как бензин и дизельное топливо. Преимущества его применения связаны, прежде всего, с экологической чистотой. Использование водорода как энергоносителя позволяет рассматривать и решать энергетические проблемы в тесной связи с экологическими задачами.

Цель работы — исследовать влияние структурных характеристик на сорбционную способность по водороду микропористых углеродных материалов и предложить перспективные сорбенты. Она посвящена разработке терморегулируемой адсорбционной системы хранения водорода, представляющей интерес для двухтопливного (H_2 , природный газ) автотранспорта с двигателем внутреннего сгорания.

Результаты и обсуждение

Выполнено исследование активированных углеродных волокон "Busofit" и гранулированных активированных углей (промышленно выпускаемых и дополнительно активированных нами). В соответствие с предложенной технологией образцы из "Busofit" подвергались специальной селективной термической обработке при высокой температуре 850 °C в присутствии газа. Древесные угли (5-7) были изготовлены из отходов деревообрабатывающей промышленности посредством контролируемого пиролиза и специальной активацию [1]. Атмосфера углекислого газа оказалась предпочтительнее по сравнению с кислородом для образования многочисленных микропор, увеличения удельной поверхности и сорбционной емкости.

Таблица 1. Структурные характеристики и емкость хранения водорода при 77 К и 0.1 МПа для различных углеродных материалов

№	Сорбент	a _v ,	a,	S _H ,	S_{BET} ,	S_{DR} ,	V _{DR} ,	V _t ,	R _{DR} ,
		мл/г	вес%	M^2/Γ	M^2/Γ	M^2/Γ	мл/г	$_{ m MЛ}/\Gamma$	Á
1	Busofit 191-5	199.9	1.76	462	1691	2496	0.887	0.234	49.9
2	Busofit-M2	203.9	1.79	465	1702	2507	0.89	0.43	41.5
3	Busofit-M4	225.1	1.98	536	1715	2547	0.9	0.42	42
4	Busofit-M8	252.9	2.23	571	1939	2985	1.04	0.27	51
5	WAC 97-03	115	1.01	271	715	1050	0.37	0.33	33.4
6	WAC 19-99	172.1	1.51	393	1005	1486	0.53	0.44	41.7
7	WAC 3-00	221.1	1.95	575	1383	2142	0.74	0.22	50
8	207C	209.2	1.84	502	1300	1944	0.69	0.37	41
9	Norit sorbonorit-3	193.8	1.71	458	1361	2044	0.73	0.26	50
10	Sutclife	236.6	2.08	527	1925	2864	1.02	0.254	53.6

Примечание: WAC –древесный активированнай уголь; a_v – объемная емкость хранения H_2 за счет физической сорбции, a – массовая емкость хранения H_2 за счет физической сорбции, S_H – BET поверхность, определенная по водороду; S_{BET} – BET поверхность, определенная по азоту; S_{DR} – удельная поверхность, определенная по уравнению Дубинина-Радушкевича, V_{DR} – объем микропор, определенный методом Дубинина-Радушкевича, V_t – объем мезопор, определенный t-методом, R_{DR} – размер микропор, определенный методом Дубинина-Радушкевича.

Изотермы физической сорбции N_2 и H_2 на образце весом 0.5-0.6 г при температуре T=77 К в диапазоне давления от 0 до 0.1 МРа были измерены с помощью быстродействующего анализатора сорбции газов, площади поверхности и размера микропор марки «NOVA 1200». Результаты исследования структурных и сорбционных

характеристик 10 сорбентов обобщены в таблице 1. Как видно, все образцы оказались микропористыми сорбентами со сложной бимодальной структурой. Наибольшую величину удельной поверхности и объема микропор среди волокнистых материалов имел образец "Виsofit-M8"; из активированных древесных углей

выделялся уголь "WAC 3-00", из гранулированных углей — "Sutcliff". Они были также и лучшими накопителями H_2 (соответственно 253, 221 and 237 мл(STP)/г) посредством физической сорбции.

Для оперативной оценки сорбционной емкости по водороду углеродных сорбентов использовался подход, предложенный в [2], согласно которому в качестве определяющих параметров выбирается объем микропор и удельная площадь поверхности. С целью получения функции, аппроксимирующей зависимость величины сорбции водорода от значения удельной поверхности при давлении 0.1 МПа и температуре 77 К, использовались данные авторов (табл. 1) и экспериментальная база данных, приведенных в [3].

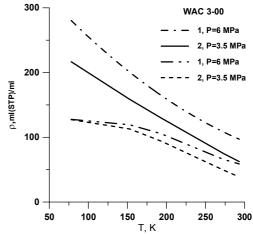
Для углеродных образцов установлена линейная зависимость объемной емкости по водороду от величины удельной поверхности сорбента (при 77 К и 0.1 МПа) в виде:

$$a_{v} = 0.0783 \, S_{BET} + 84.02 \tag{1}$$

Влияние объема микропор на величину сорбционной емкости по H_2 хорошо описывается линейной функцией:

$$a_v = 119.12V_{DR} + 115.41$$
 (2)

В результате экспериментов получены изотермы адсорбции H_2 на различных марках углеродных материалов и найдены значения эмпирических коэффициентов в уравнении Дубинина-Радушкевича


$$a_{eq} = \frac{W_0}{v_a} \exp\left\{ -\left[\frac{R_{\mu} T \ln\left(P_{sat}/P\right)}{E} \right]^2 \right\}. \tag{3}$$

where
$$P_{sat} = P_{cr} (T/T_{cr})^2$$
 (4)

Математическая модель баллона с сорбентом и H_2 основана на системе уравнений — сохранения, энергии, кинетики и равновесного состояния (уравнения изотермической адсорбции). Ядром задачи служило двумерное нестационарное уравнение теплового баланса с источниковым членом, учитывающее теплоту сорбции и наличие теплообменного элемента (тепловой трубы). Тепловая труба позволяет использовать различные источники энергии, контролировать распределение температуры в слое сорбента, регулировать степень извлечения газа и время разрядки баллона. Предлагаемая модель дает возможность рассчитать поле

температур и концентраций.

Расчеты выполнены в интервале температуры от 77 до 273 К. "Busofit-M8" и "WAC 3-00" выбраны как перспективные сорбенты для создания адсорбционной системы хранения H_2 . На рис. 1 показана объемная плотность хранения H_2 с учетом сжатого газа в макропорах (1) и без него (2, адсорбированная фаза) как функция температуры окружающей среды.

Заключение

Для улучшения параметров бортовой адсорбционной системы хранения H_2 предложено использовать активированное угольное волокно "Busofit" и уголь, полученный из отходов древесины. Оптимизация структуры сорбента и режима сорбции, позволит повысить величину сорбционной емкости до 500–600 мл(STP)/г, что близко к показателям, необходимым для применения на транспорте.

Испольование системы контроля на тепловых трубах обеспечит оптимальный режим работы бортовой системы хранения газа.

Работа выполнена в рамках ПОФИ НАН Беларуси «Водород», задание № 13.

Литература

- 1. Vasiliev LL et all. Activated Carbon For Gas Adsorption. III Int. Symposium Fullerene and Semifullerene; Structures in the Condensed Media, 22-25 June 2004, Minsk, Belarus:110–115.
- 2. Adsorbed Natural Gas Research Conducted by Atlanta Gas Light Adsorbent Group (AGLARG). Final report 1990-1993 Gas Research Institute, Atlanta GRI-95/0068, 1994.
- 3. Nijkamp MG et all. Hydrogen storage using physisorption materials demands. Applied Physics A. Materials Science & Processing 2001. A72:619–623.