БОРОГИДРИД НАТРИЯ ДЛЯ ХРАНЕНИЯ ВОДОРОДА

<u>Минкина В.Г.*</u>, Шабуня С.И., Дмитренко Ю.М., Баррал К.⁽¹⁾

Институт тепло- и массообмена им. А.В. Лыкова НАН Беларуси,

ул. П.Бровки 15, Минск, 220072 Беларусь ⁽¹⁾ Air Liquide, CRCD, Les-en-Josas, France

*Fax: 375(17)-284-22-12 E-mail: minkina@dnp.itmo.by

Введение

Известно, что борогидрид натрия NaBH₄ является крайне гигроскопичным веществом, активно поглощающим влагу. Водные растворы NaBH₄ всегда содержат некоторое количество щелочи NaOH, образующейся в результате его частичного гидролиза.

Таким образом, скорость гидролиза $NaBH_4$ в воде зависит от температуры и pH раствора и поведение водных растворов борогидрида натрия описывается свойствами тройной системы $NaBH_4$ -NaOH- H_2O .

В литературе имеются некоторые данные о стабильности щелочных гидридоборатов в воде и щелочных растворах [1-3]. Но эти исследования проводились для сильно разбавленных растворов.

Данная работа была посвящена изучению стабильности $NaBH_4$ при хранении его в виде концентрированного раствора или в твердом состоянии, соответствующего по составу кристаллогидрату.

Экспериментальная установка

Стабильность водных растворов NaBH₄ и скорость его разложения исследовались в цилиндрическом сосуде с фланцевой крышкой, изготовленном из нержавеющей стали. Фланец имеет фторопластовое уплотнение и штуцер с соединением типа «Swagelok» для подсоединения образцового манометра. Сосуд с исследуемым раствором помещался в жидкостной термостат. Зависимость скорости разложения борогидрида натрия от времени Оценивалась по изменению величины давления в сосуде, которое пропорционально количеству образовавшегося водорода

В экспериментальные данные вносилась поправка на величину утечек водорода в промежуток времени между окончанием приготовления раствора И завершением герметизации сосуда. Эта поправка была существенной в случае наибольших температур и наименее концентрированных растворов использовалось NaBH₄. Для коррекции измеренное значение степени разложения на установившемся режиме.

Результаты и их обсуждение

Проведены исследования по стабильности тройной системы $NaBH_4$ - H_2O -NaOH в интервале концентраций $NaBH_4$ 7-42%, концентраций щелочи 1.5-6% и температуры от 0 до 50°C.

Разложение $NaBH_4$ в водно-щелочных растворах проходит гораздо медленнее, чем в чистой воде, и такие растворы тем более устойчивы, чем выше их щелочность (Рис.1).

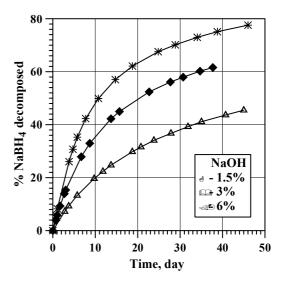
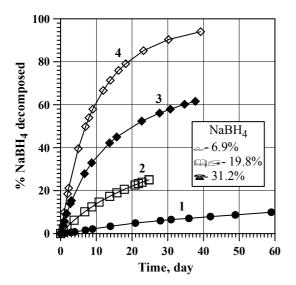



Рис.1. Гидролиз NaBH₄ в щелочном растворе NaOH при 50°C. C_{NaBH_4} =19.8%.

Увеличение концентрации NaBH₄ и понижение температуры также стабилизируют раствор (Рис.2). Введение в состав раствора щелочи замедляет процесс гидролиза, но при повышении температуры эффективность влияния щелочи понижается (Рис.2. кривые 1,3).

При приготовлении водных составов с концентрацией $NaBH_4$ выше 50% образуются пористые частицы, которые после сушки при комнатной температуре превращаются в сыпучий крупнодисперсный порошок. Были приготовлены порошки состава $NaBH_4 \cdot H_2O$, $NaBH_4 \cdot 1.4H_2O$, $NaBH_4 \cdot 2H_2O$ (кристаллогидрат борогидрида натрия) и исследована их стабильность в интервале температур 30-50°C. При температуре выше 36.4°C (из политермы растворимости двойной системы $NaBH_4 \cdot H_2O$) не зависимо от степени гидратирования

молекулы NaBH₄ порошки «расплавляются» и процесс сопровождается выделением водорода.

Рис.2. Гидролиз NaBH₄ в 3% растворе NaOH при 22° C (кривая 1) и 50° C (кривые 2-4).

Добавление щелочи приводит к стабилизации кристаллогидрата $NaBH_4$. При температурах ниже $36.4^{\circ}C$ система $NaBH_4$ - H_2O -NaOH будет находиться в твердом состоянии в виде смеси $NaBH_4 \cdot 2H_2O$ и NaOH и гидролиз $NaBH_4$ отсутствует. На рисунках 3-4 представлены зависимости степени разложения $NaBH_4$ для системы $NaBH_4 \cdot 2H_2O$ -NaOH в интервале температур 40- $60^{\circ}C$ и концентраций щелочи 0-3%.

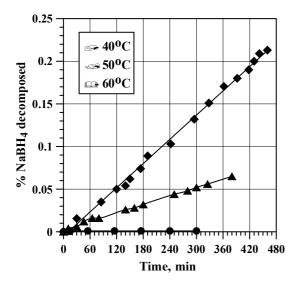
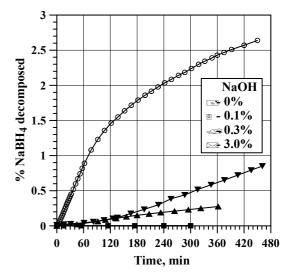



Рис.3. Влияние температуры на разложение NaBH₄ для системы NaBH₄:2H₂O-3%NaOH

При высокой концентрации NaOH (3%) и температуре 40°C за время эксперимента выделения водорода не было, но при температурах выше 40°C происходит медленный гидролиз NaBH₄.

Рис.4. Влияние входной концентрации NaOH на разложение NaBH $_4$ при 40° C для системы NaBH $_4$ ·2H $_2$ O-NaOH

Полученные экспериментальные данные показывают, что полностью остановить реакцию гидролиза $NaBH_4$ добавлением щелочи при высоких температурах (>40°C) для кристаллогидрата и при любых температурах для растворов не удается.

Выводы

В результате исследований установлено, что NaBH₄-H₂O-NaOH, тройные системы полученные на основе кристаллогидрата борогидрида натрия с добавлением небольшого количества щелочи, обладают достаточно высокой стабильностью, превышающей порядок аналогичные тройные системы растворе.

Целесообразно хранить борогидрид натрия в форме сухого кристаллогидрата (с небольшим добавлением щелочи), который стабилен при температуре ниже 36.4°С, имеет лучшие механические свойства и лучшую растворимость, чем безводный NaBH₄.

Литература

- 1. Мочалов К., Шифрин Х., Богоносцев А. Гидролиз борогидрида натрия. Ж. Физ. Химии 1963; 37(11):2404-2407.
- 2. Мочалов К., Шифрин Х., Богоносцев А. Кинетика гидролиза борогидрида калия.. Кинетика и катализ 1964; 5(1):174-177.
- 3. Хаин В., Волков А. О стабильности водных растворов тетрагидридоборатов натрия и калия. Ж. Прикладной химии 1980; 53(11):2404-2407