ELECTRONIC STRUCTURE OF HYDROGEN BRONZES H_xWO_3 AND $H_xM_0O_3$ AS STUDIED BY X-RAY PHOTOELECTRON AND EMISSION SPECTROSCOPY METHODS

Khyzhun O.Yu.*, Solonin Yu.M.

Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., Kyiv UA-03142, Ukraine

E-mail: khyzhun@ipms.kiev.ua

Tungsten and molybdenum trioxides, WO_3 and MoO_3 , are of great interest both in technology and in theory in particular due to their ability to incorporate alkali metals, ammonium ions and hydrogen to form bronzes A_xMO_3 , where A is an incorporating atom and M is either W or Mo atoms. Physical and chemical properties of the bronzes can vary dramatically with concentration x of an incorporating element, A.

The hexagonal tungsten bronzes, H_xWO_3 , are substoichiometric compounds and have been characterized in the range $0 < x \le 0.46$ [1,2]. With respect to molybdenum bronzes, it is well-known that hydrogen is fairly easy implanted into the orthorhombic matrix of MoO₃ forming H_xMoO₃ bronzes with the x content of hydrogen in the range 0 < x < 1.72 [3]. The bronzes are obtained due to reaction of MoO₃ with atomic hydrogen in a gas or aqueous phase, or due to the so-called "hydrogen spillover" effect [3]. However, in Ref. [4] the activation of arbitrary oriented very thin plate-like MoO₃ crystal layers was performed by an impregnation of the layers with palladium salt and following heating in air at 300 °C. On the second stage, the activated MoO₃ layers were exposed to hydrogen at 200°C for synthesis of cubic molybdenum hydrogen bronze, H_xMoO₃, with lattice parameter a=0.380 nm [4]. Content of hydrogen in the studied H_xMoO_3 bronze was found to be x=1.63[4,5]. The obtained $H_{1.63}MoO_3$ bronze differs from classic H_{1.55-1.72}MoO₃ Glemser's phases, which are orthorhombic and their crystal structure is based on a non-distorted MoO₃ lattice.

The H_xWO_3 and H_xMoO_3 bronzes possess metallic conductivity and represent a new and important electrode material. Additionally, the compounds are prospective sensor materials which possess good electrochromic properties [3,4]. Some properties of the hydrogen bronzes H_xWO_3 and H_xMoO_3 can be understood by considering their electronic structure. The electronic structure of cubic H_xMoO_3 and hexagonal H_xWO_3 phases was investigated in the present work in a comparative study with that of molybdenum and tungsten trioxides.

For this purpose, X-ray photoelectron (XPS) and emission (XES) spectroscopy methods were used. The experimental technique was similar to that described in details in Refs. [5,6].

Results of studies of the O $K\alpha$ XES bands of orthorhombic MoO₃ and cubic H_{1.63}MoO₃ compounds are presented in Fig. 1, but those of monoclinic WO₃ and hexagonal H_{0.24}WO₃ samples in Fig. 2.

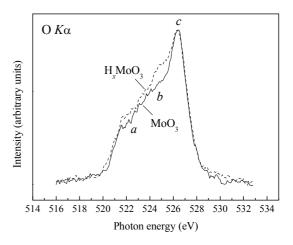


Fig. 1. X-Ray emission O $K\alpha$ bands of MoO₃ (solid curve) and H_x MoO₃ (dashed curve).

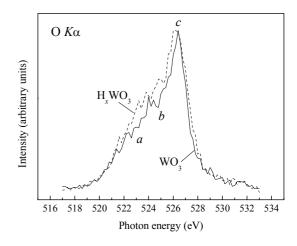


Fig. 2. X-Ray emission O $K\alpha$ bands of WO₃ (solid curve) and H_x WO₃ (dashed curve).

As can be seen from Figs. 1 and 2, implantation of hydrogen into the orthorhombic MoO_3 and monoclinic WO_3 matrices leading to formation of cubic $H_{1.63}MoO_3$ and hexagonal $H_{0.24}WO_3$ bronzes, respectively, results in increasing the relative intensities of the low-energy fine-structure features "a" and "b" of the O $K\alpha$ emission bands. As a results, half-widths of the bands increase in the sequence $MO_3 \rightarrow H_xMO_3$ (M = W, Mo). The above peculiarities of the spectra are the results of two factors: the formation of new O–H bonds in the studied H_xMO_3 bronzes and the transformation of the crystal structure in the sequence $MO_3 \rightarrow H_xMO_3$ [5,6].

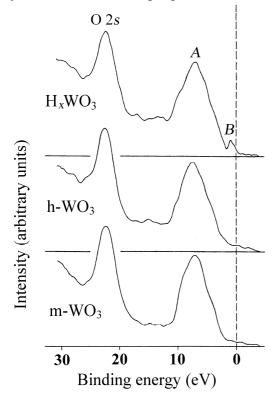


Fig. 3. XPS valence-band spectra of hexagonal hydrogen tungsten bronze (H_xWO_3), hexagonal and monoclinic tungsten trioxides (h-WO₃ and m-WO₃, respectively).

The XPS valence-band spectra in hexagonal tungsten hydrogen bronze $H_{0.24}WO_3$ and in monoclinic and hexagonal tungsten trioxides are presented in Fig. 3. Similar studies of molybdenum hydrogen bronze $H_{1.63}MoO_3$ and molybdenum trioxide MoO_3 were carried out in Ref. [5]. As can be seen from Fig. 3, the XPS valence-band spectrum of tungsten hydrogen bronze $H_{0.24}WO_3$ reveals a creation of an additional near-Fermi subband "B". The sub-band, as Fig. 3 shows, is absent on the XPS valence-band spectra of monoclinic and hexagonal forms of tungsten trioxide (m-WO₃ and h-WO₃, respectively). The similar near-Fermi sub-

band was detected also on the XPS valence-band spectrum of H₁₆₃MoO₃ hydrogen bronze [5]. According to the results of Refs. [5,6], the above near-Fermi sub-band on the XPS valence-band spectra of the H_xMO₃ hydrogen bronzes under investigation can be explained by filling the W (Mo) dt_{2g} -like bands, which are empty in WO₃ and MoO₃ trioxides, due to extra hydrogen electrons. It should be mentioned that the formation of the near-Fermi sub-band was also observed in Ref. [7] when studying XPS valence-band spectra orthorhombic molybdenum trioxide and monoclinic tungsten trioxide partly reduced by ultraviolet irradiation in the presence of molecular hydrogen. Similar to the effect observed for the emission bands, half-widths of the XPS valenceband spectra increase somewhat when going from MO_3 to H_rMO_3 (M = W, Mo).

Results of the present XPS studies reveal that the O 1s core-level binding energies do not change in the sequence $MO_3 \rightarrow H_x MO_3$. These results indicate that the charge states of oxygen atoms in the studying tungsten and molybdenum hydrogen bronzes are similar to those in the corresponding trioxides.

References

- Dickens P.G. In: Goodenough J.B., Whit tinghem M.S., editors. Solid State Chemistry of Energy Conversion and Storage: Advances in Chemistry Series 163. Washington DC: American Chemical Society, 1977, p. 165.
- Šušic M.V., Solonin Y.M. Thermic investigation of hexagonal hydrogen bronze, H_xWO₃. J. Mater Sci. 1988; 23: 267-271.
- Sermon P.A., Bond G.C. Studies of Hydrogen Spillover. Part 4.–Factors Affecting Hydrogen Spillover and its Reversal. J. Chem. Soc. Faraday Trans. I 1980; 76: 889-900.
- 4. Solonin Y.M. The structural aspects of hydrogen interaction with activated textured molybdenum trioxide layer. Int. J. Alternative Energy Ecology 2002; 1: 73-76.
- Khyzhun O.Y., Strunskus T., Solonin Y.M. XES, XPS and NEXAFS studies of the electronic structure of cubic MoO_{1.9} and H_{1.63}MoO₃ thick films. J. Alloys Compounds 2004; 366: 54-60.
- Khyzhun O.Y., Solonin Y.M., Dobrovolsky V.D. Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies. J. Alloys Compounds 2001; 320: 1-6.

7. Fleisch T.H., Mains G.J. An XPS study of the UV reduction and photochromism of MoO₃ and

WO₃. J. Chem Phys 1982; 76: 780-786.