КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПЕРЕНОСА ИОНОВ H^+ , H_3O^+ , $H_5O_2^+$ В НАНОСТРУКТУРНЫХ СУПЕРМОЛЕКУЛАХ ВОДЫ

<u>Безносюк С.А.</u>*, Пережогин А.А.

Алтайский государственный университет, пр. Ленина 61, Барнаул, 656049 Россия *Вегпозуик@chemwood.dcn-asu.ru

Введение

Известно, что перенос протона в различных агрегатных состояниях воды играет ключевую роль в водородной энергетике[1]. Это связано с тем, что протон - основной агент эстафетного переноса заряда в водных средах, используемых в топливных элементах. Высокая подвижность протона определяет уникальный эстафетный механизм «переноса» катионов H₃O⁺ и анионов ОН. Вместе с тем, транспорт самих катионов и анионов затруднён их пленением в клеточных наноструктурах конденсированных фаз воды. Механизмы транспорта ионов H_3O^+ , $H_5O_2^+$, OH^- и эстафетного переноса протона пока являются недостаточно исследованными. В данной работе изучены особенности энергетических барьеров транспорта ионов воды и эстафетного переноса протона в рамках квантово-полевой химии и методов компьютерного моделирования [2].

Результаты и обсуждение

В квантово-полевой химии наноструктуры воды (льда) описываются пространственной системой супермолекул кольцевых сеток воды $(H_2O)_n$ с внутримолекулярными водородными связями (O-H-O). Сетки формируют клеточное строение наночастиц воды. Стенки этих клеток имеют форму кольца (O_6H_6) . Шесть атомов кислорода в нём связаны шестью водородными связями.

Транспорт ионов воды через клеточные сетки воды имеет в качестве основной лимитирующей стадии преодоление активационных барьеров, лежащих в направлении оси шестичленного кольца (O_6H_6) клетки. Между стенками клетки и ионами воды (H^+ , H_3O^+ , $H_5O_2^+$) действуют силы межмолекулярной адгезии.

Поверхности потенциальной энергии адгезии рассчитывались методом функционала электронной плотности [2]. Распределения плотности заряда электронов в частицах брались из расчётов ионов воды и супермолекул кольцевых сеток водной среды (H_2O)_п методом молекляру

Таблица 1. Величины параметров ионов воды

Ионная система	Параметр	Величина
+0.419 H J	L(O-H),Å	0.99
H +0.419 +0.419 +0.320	α(Н-О-Н), град	113.8
$\begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	L(O ₁ -H ₁),Å	0.98
	L(O ₁ -H ₃),Å	1.16
	α(H ₁ -O ₁ -H ₂), град	107.5
	α(H ₁ -O ₁ -H ₃), град	116.5
H_2	$\alpha(O_1-H_3-O_2),$	
+0.320	град	178.7
O H O H O H O H O O O O O O O O O O O O	L(O ₁ -H ₁),Å	1.03
	L(O ₂ -H ₁),Å	1.80
	α(H-O ₁ -H ₁), град	117.9
	α(O ₁ -H ₁ -O ₂), град	177.8

ных орбиталей в минимальном базисе (STO-3G). Результаты расчётов приведены в таблице 1.

На рис. 1 показаны диаграммы основных стадий прохождения катионов H_3O^+ и $H_5O_2^+$ через водное кольцо и основные межмолекулярные взаимодействия для оптимальной геометрии.

Рис. 1. Модель перехода H_3O^+ и $H_5O_2^+$ через циклический фрагмент (O_6H_6).

Потенциальные кривые транспорта для H_3O^+ и $H_5O_2^+$ через циклический фрагмент показаны на рис. 2, 3.

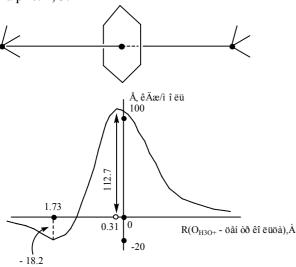


Рис. 2. Потенциальная кривая прохождения иона H_3O^+ через циклический фрагмент (O_6H_6).

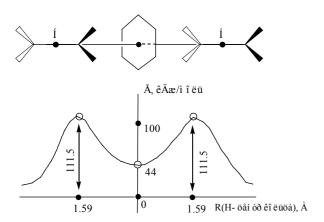


Рис. 3. Потенциальная кривая прохождения иона $H_5O_2^+$ через циклический фрагмент (O_6H_6).

В случае переноса протона через циклический фрагмент, в форме Н₃О⁺ имеем высокий барьер (130 кДж/моль). В случае переноса протона в форме $H_5O_2^+$ через циклический фрагмент имеем лва барьера: высокий внешний барьер (111 кДж/моль) и низкий внутренний барьер (67 кДж/моль). В первом случае барьер связан с силами отталкивания иона Н₃О⁺ от кольца при попытке пройти через него. Во втором случае один барьер связан с силами отталкивания, а другой с силами притяжения протона к ионам кислорода.

На рис. 4 показан энергетический барьер прохождения H^+ через кольцо (O_6H_6).

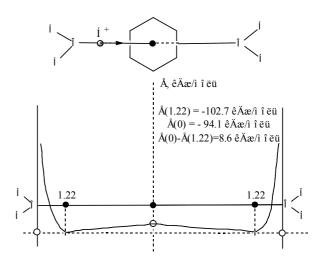


Рис. 4. Потенциальная кривая прохождения H^+ через циклический фрагмент (O_6H_6).

Высота энергетического барьера H^+ составляет всего 9 кДж/моль. Барьер транспорта протона H^+ через циклический фрагмент (O_6H_6). внутри упорядоченных супермолекул воды на порядок меньше, чем у его гидратированных форм H_3O^+ , $H_5O_2^+$.

Выводы

На основе вышеизложенных расчётов ясно, что энергетический барьер переноса протона клеточную структуру воды значительно ниже аналогичных барьеров ионов H_3O^+ , $H_5O_2^+$. Это и обеспечивает эффективный эстафетный механизм переноса гидроксония Н₃О⁺. Вклад в перенос зарядов внутри упорядоченных клеток супермолекул воды самих ионов H_3O^+ , $H_5O_2^+$ мал, так как они сильный конфайнмент внутри испытывают клеток воды $(H_2O)_n$ с внутримолекулярными водородными связями. Транспорт этих ионов происходить только по областям, лежащим вне супермолекул воды.

Литература

- 1. Haile S.M. Materials for fuel cells. Materials Today 2003;(3):24-29.
- 2. Beznosyuk S.A. Modern quantum theory and computer simulation in nanotechnologies: Quantum topology approaches to kinematical and dynamical structures of self-assembling processes. Materials Science & Engineering C 2002;19(1-2):369-372.