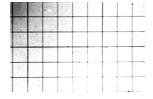
ИССЛЕДОВАНИЕ ФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И УГЛЕРОДНЫХ НАНОСТРУКТУРНЫХ МАТЕРИАЛОВ С ПОМОЩЬЮ АКУСТИЧЕСКИХ ВОЛН ГИГАГЕРЦЕВОГО ДИАПАЗОНА

Кустов А.И. *, Мигель И.А.

*Voronezh State Pedagogical University, 86, Lenin st., Voronezh, Russia 394043 Voronezh Military Air Engineering Institute, 27 Starikh Bolshevikov st., Russia 394064

Веление

Проблема неразрушающего экспрессного контроля физико-механических свойств материалов в конденсированном состоянии остается в настоящее время одной из актуальных научных проблем. Объектами исследований, представляющими для нас наибольший интерес, являлись материалы, применимые для изготовления топливных элементов, а также, углеродные наноструктурные материалы.


В работе представлены результаты экспериментальных исследований материалов с помощью акустических волн гигагерцевого диапазона. Суть предлагаемых методов сводится, во-первых, к послойной визуализации подповерхностных структур изучаемых объектов с последующим анализом получаемых изображений, а во-вторых, к определению значений скоростей акустических волн и расчету упругих постоянных материала. Применяемые неразрушающие методы исследования структуры и свойств не ограничены природой материалов – объектами могут быть и диэлектрики, и металлы, и кристаллические, и аморфные вещества, в том числе и наноструктурные материалы. В качестве модельных объектов для экспериментального исследования были выбраны металлы, главным образом стали. На свойства этих материалов влияют химический и фазовый состав, структура, термические и деформационные воздействия.

Результаты и обсуждение

Методом визуализации с помощью акустических волн [1,2] получали изображения микроструктуры образцов из стали на различных глубинах от поверхности. Анализ изображений позволил рассчитать размеры зерен, наблюдать их трансформацию во времени или при внешних воздействиях. В соответствии с представлениями Холла-Петча определялись прочностные характеристики, например, предел текучести ($\sigma_{0,2}$) изучаемых материалов. Полученные значения $\sigma_{0,2}$ находятся в хорошем соответствии с величинами, являющимися табличными для данного типа сталей.

Пример полученного акустомикроскопического изображения представлен на рис.1.

Он демонстрирует с увеличением $\sim\!220^{\rm x}$ микроструктуру стали ВНС-2М. Причем, сравнительный оптический снимок с тем же увеличением дает изображение полированной поверхности без проявления элементов структуры. После деформационных или термических воздействий наблюдалась трансформация структуры.

 θ

Рис. 1. Сравнительные оптическое (*a*) и акустическое (*б*) изображения приповерхностных слоев ст. *ВНС-2М* (*a*) ~200 x ; *б*) H₂O, f=407 МГц, масштаб: 28 мкм/дел., Z = -12 мкм).

Существенно расширяет возможности получения информации об исследуемых материалах акустомикроскопический метод V(Z)- кривых [3]. Он позволяет получать характерные для данного материала кривые, обусловленные его упруго-механическими константами. Пример такой зависимости для углеродистой стали представлен на рис.2.

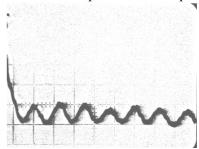


Рис. 2. V(Z)-кривая для углеродистой стали (H_2O , масштаб по горизонтали 10мкм/дел., по вертикали 1 B/дел.).

В соответствии с изложенными ранее [4] принципами, полученная кривая позволяет по характерным расстояниям ΔZ_N между максимумами, лежащими правее главного, определять значения скорости υ_R поверхностных акустических волн (ПАВ). Если известна величина скорости акустических волн в иммерсионной жидкости υ_ℓ и рабочая частота f аку-

стического микроскопа, то по определенному экспериментально интервалу $\Delta Z_{\rm N}$ рассчитывают:

$$\upsilon_R = \upsilon_I \left[1 - \left(1 - \frac{\upsilon_I}{2 \cdot f \cdot \Delta Z_N} \right)^2 \right]^{-\frac{1}{2}}$$

Для расчета значения упругих модулей изучаемого материала в локальной области следует использовать табличные значения плотности ρ_s и коэффициента Пуассона ν или же их величины, определенные одним из известных стандартных методов.

$$E = \upsilon_R^2 \cdot \frac{2 \cdot \rho_s \cdot (1 + \nu)^3}{(0.87 + 1.12 \cdot \nu)^2}$$

$$G = \upsilon_R^2 \cdot \rho_s \cdot \left(\frac{1 + \nu}{0.87 + 1.12 \cdot \nu}\right)^2$$

ские методы позволяют получать не только конкретные значения физико-механических свойств материалов, но и их корреляционные зависимости от времени, режимов термической и механической обработки и проч. Подтверждением этому положению являются примеры полученных зависимостей числа зарождающихся флокенов, изменения скорости ПАВ, характеристик затухания ($\Delta V/V$), размеров возникающих неоднородностей от концентрации диффундирующего водорода и проч. для ряда сталей [5]. Кроме того, V(Z)-метод позволяет различать свойства сталей с различной степенью деформации или при наличии текстур. Характерный пример выявления таких различий приведен на рис.3.

Рис. 3. Оценка физических свойств стали с различной степенью деформации методом V(Z) – кривых (H_2O , по вертикали: 1 B/дел., a) 5% деформация; шлиф параллелен плоскости прокатки; масштаб по горизонтали: 10,6 мкм/дел., $\Delta Z_N=13,74$, $\upsilon_R=2,98\cdot10^3$ м/с; δ) 50% деформация; шлиф параллелен плоскости прокатки; масштаб по горизонтали: 12,5 мкм/дел., $\Delta Z_N=14,95$ мкм, $\upsilon_R=3,11\cdot10^3$ м/с).

И, наконец, что касается исследования физических свойств наноструктурных углеродных материалов. Выше уже говорилось о том, что методы акустомикроскопической дефектоскопии применимы практически к любым материалам в конденсированном состоянии. Возможность их использования для углеродных материалов демонстрируется на графите

ПРОГ, выбранном в качестве модельного. Его основые характеристики, определенные с помощью акустомикроскопических методов, сведены в таблицу 1.

Таблица 1

Характеристика	Значение
Скорость ПАВ, υ_R (10 ³ м/c)	2,01
Модуль упругости, $E (10^9 \Pi a)$	12,77
Интервал, $\Delta Z_{\rm N} \ (10^{-6} {\rm M})$	5,6
Коэффициент Пуассона, и	0,14
Пористость, θ (%)	14
Плотность, $\rho_{s}(10^{3} \text{ кг/м}^{3})$	1,124

Заслуживает отдельного рассмотрения результат, показывающий чувствительность применяемых методов к нанонеоднородностям, размер которых на порядки меньше разрешающей способности САМ. Пример изменения формы V(Z)-кривых для стекла с различной плотностью нанопор приведен на рис.4.

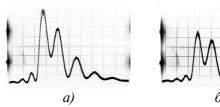


Рис. 4. Изменение формы V(Z)-кривой в районах с различной плотностью нанопор в стекле марки ТПС ($\upsilon_R=3,53$ 10 3 м/с, $\Delta Z_N=19,37$ мкм, $(\Delta V/V)_{max}=41\%$, масштаб по вергикали 1 дел.= 0,25 B, по гори зонгали—1 дел.=12 мкм;)

Выводы

Таким образом, методы акустомикроскопической дефектоскопии перспективны для исследования физических свойств материалов, применяемых для топливных элементов, а также углеродных наноструктурных материалов.

Литература

- 1. Куэйт К.Ф., Аталар А., Викрамасинг Х.К. Акустическая микроскопия с механическим сканированием.// ТИИЭР, 1979, т.67, N8, с.5-31
- 2. Кустов А. И. Изучение структуры и физикомеханических свойств твердотельных мате-риалов методами акустической микроскопии // Матер. VII Рос. конф. "Демпфирующие материалы". 1994. С. 89—97.
- 3. Wilson R. G., Weglein R. D. Acoustic microscopy of materials and surface layers // Appl. Phys. 1994. V. 55. N 9. P. 3261 —3275.
- 4. Кустов А.И. Обнаружение неоднородностей акустомикроскопическими методами // "Физика и химия стекла", 1998, т.24, N0 6, с.809-816.
- 5. Budanov A.V., Kustov A.I., Migel I.A. The Study of Changes of Physical Mechanical Properties of Materials in a Condensed State under Hydrogen influence using Fault Detection Acoustic Microscopy Methods // Hydrogen materials science..., Science Series, II. Mathematics, Physics..., ed. T.N.Veziroglu, Dm.Schur, vol. 72–2004-p.203-215.