ПОЛИМЕРНЫЕ ПРОТОНПРОВОДЯЩИЕ МЕМБРАНЫ НА ОСНОВЕ ПОЛИВИНИЛОВОГО СПИРТА И АРОМАТИЧЕСКИХ КИСЛОТ

<u>Писарева А.В.*,</u> Добровольский Ю.А.

Институт проблем химической физики РАН 142432, Московская обл., г. Черноголовка, пр. Н.Н. Семенова, д.1 *e-mail: anyuta@icp.ac.ru, Факс: (09651)55420*

Введение

Протонпроводящие полимерные электролиты в последнее время находят широкое применение в качестве протонпроводящих мембран в полимерных мембранных топливных элементах (ТЭ).

Основными требованиями для протонпроводящих полимерных электролитов являют ся высокая термическая стабильность, механическая прочность, газо-непроницаемость, устойчивость к высокому влагопоглощению, и проводимость $\sim 10^{-3}-10^{-1}$ См/см при 298 К.

Целью данной работы являлось получение нового поколения протонпроводящих мембран, сохраняющих высокие транспортные пара метры в широком интервале температур и влажности окружающей среды и тестирование их в составе водородно-кислородных топливных элементов.

Объекты исследования

В качестве объектов исследования нами были выбраны индивидуальные ароматические кислоты, содержащие в своем составе карбоксильные, гидроксильные и сульфогруппы, а также полимерные электролиты на основе поливинилового спирта (ПВС) и ароматических кислот, полученные методом полива.

Экспериментальная часть

Термическая устойчивость определена с помощью дифференциально-термического анализа (Q-1500 D) и дифференциально сканирующей калориметрии (STA 409PC), проводимость измерена с помощью импедансной спектроскопии (Elins, Z 350-M). Структура изучена методом ИК-спектроскопии. Для измерения характеристик топливных элементов с изучаемыми мембранами использовали измерение циклических вольт-амперограмм, а также измерение ЭДС исследуемого ТЭ.

Результаты и обсуждение

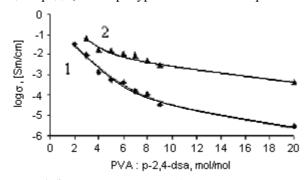
Исследовано влияние состава и строения кристаллических ароматических кислот с различным расположением и количеством функциональных групп на параметры протонного переноса.

Карбоновые кислоты имеют небольшое значение величины протонной проводимости, обусловленное транспортом протонов по дефектам в их кристаллической решётке. В отсутствие влаги в окружающей среде проводимость ароматических бензолполикарбоновых кислот не превышает 10^{-12} См/см. Заметная протонная проводимость появляется лишь при относительной влажности > 40 % отн. При повышении влажности до 95 % отн. Проводимость возрастает до 10^{-5} — 10^{-6} См/см [1].

Кристаллические ароматические соединения, содержащие в своем составе SO_3 Н-группы, сохраняют высокую протонную проводимость даже в вакууме ($10^{-5}-10^{-6}$ См/см), которая значительно возрастает при повышении влажности окружающей среды. Однако, уже при влажности ~ 30 % отн. они «расплываются» на воздухе, образуя жидкую фазу.

Преодолеть недостатки, присущие индивидуальным карбоновым и сульфоновым кислотам можно введением их в органическую полимерную матрицу, обладающую собственной непрерывной системой водородных связей. Нами в качестве полимерной матрицы был выбран ПВС. Кроме наличия системы водородных связей, полимеры на основе ПВС обладают низкой газопроницаемостью и высокой адгезией к большинству материалов, что является определяющим при создании ТЭ.

В случае двойной системы: ПВС – Бензолполикарбоновая кислота, мембраны газонепроницаемы и обладают проводимостью от 10^{-5} до 10^{-6} См/см при 95 % относительной влажности (табл. 1) и растворяются в воде, гомогенные пленки удается получить только при мольном соотношении ПВС – кисло та > 10:1. Однако, проводимость полученных полимерных материалов значительно превышает проводимость индивидуальных кислот даже при значительном разбавлении ПВС.


При введении сульфоновых кислот в ПВС получены гомогенные пленки во всем изученном интервале составов, проводимость при влажности 95 % отн. достигает $10^{-3} - 10^{-2}$ См/см. Недостатком мембран, допированных ароматическими сульфокислотами является их высокая гигроскопичность, приводящая к понижению механической

прочности мембран: переход в гелеобразное состояние при мольном соотношении $\Pi BC - \kappa$ ислота > 1:0.5.

Таблица 1. Протонная проводимость полимерных электролитов в зависимости от влажности

	σ ₂₉₈ , См/см	
кислота	ПВС: кислота (10:1)	
	47 % RH	95 % RH
бензойная	3.1•10 ⁻⁸	9.7•10 ⁻⁸
1,4-бензолдикарбоновая	1•10-8	3.7•10 ⁻⁶
1,2,4-бензолтрикарбоновая	1.2•10 ⁻⁸	9.2•10 ⁻⁶
4-гидроксибензойная	8•10-9	4.1•10 ⁻⁶
2,5-дигидроксибензойная	1.7•10 ⁻⁸	2.4•10 ⁻⁴
п-толуолсульфоновая	1.1•10 ⁻⁴	1.7•10 ⁻²
п-фенолсульфоновая	3.6•10 ⁻⁴	2.4•10 ⁻²
фенол-2,4-дисульфоновая	1.5•10 ⁻²	4.3•10 ⁻²
5-сульфосалициловая	6.8•10 ⁻⁵	6.5•10 ⁻³
флавиановая	6.2•10 ⁻⁵	3.4•10 ⁻³

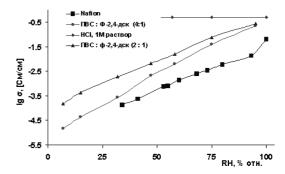

Наиболее высокой проводимостью среди изученных систем с сульфоновыми кислотами обладали электролиты ПВС – фе нол-2,4-дисульфокислота. Все синтезированные плёнки оптически прозрачны, гомогенны и рентгено-аморфны. Количество воды, поглощённое пленками, а, соответственно, и проводимость, зависят от влажности окружающей среды, температуры и состава материала.

Рис. 1. Зависимость проводимости плёнок от мольного соотношения ΠBC : ϕ -2,4-дск при различной влажности: I – 32, 2 -44 % отн.

Полученные пленки устойчивы до 373 К. При низкой влажности (< 30 % отн.) температурная зависимость проводимости лучше описывается VTF-уравнением, а при более высокой – уравнением Аррениуса, что связано со сменой механизма проводимости от термоактивационного (при высокой влажности) к моделям переноса иона при движении полимерной цепи (при низкой влажности).

Полученные материалы по проводимости в изученных температурных и влажностных интервалах превосходят Nafion.

Рис. 2. Протонная проводимость различных материалов при 298 К

Исследована возможность практического использования мембран, на основе ПВС и фенол-2,4-дисульфокислоты в составе единичной ячейки топливного элемента, состоящей из мембраны, катализатора на основе Pt-черни, газодиффузионного слоя из пористой углеродной бумаги («Ballard®» AvCarbTMP50T), служащего, в свою очередь, токовым коллектором [2].

ЭДС исследуемого ТЭ не зависит ни от состава мембраны, ни от влажности окружающей среды и составляет 1±0.03 В. С помощью анализа импедансных спектров показано, что токи обмена в среде Н2 намного превышают токи обмена на воздухе и не зависят от состава мембраны и влажности окружающей среды. Для мембран с высоким содержанием фенол-2,4-дисульфокислоты при протекании процесса электрохимиического окисления Н2, параметры ТЭ перестают зависеть от влажности из-за присутствия H₂O в продуктах реакции и ее быстрого перераспределения по объему протонпроводящей мембраны. Эффективная работа элемента реализуется при влажности > 32 % отн. В исследуемых ячейках ток при напряжении 0.4 В достигает 250 мА, максимальная мощность превышает 100 мВт/см².

Благодарность

Работа выполнена при поддержке проекта РФФИ № 03-03-32422.

Литература

- 1. Писарева А.В. Синтез и исследование физико-химических свойств кристаллических и полимерных протонных электролитов на основе бензолполикарбоновых и бензолполисульфоно-вых кислот Канд. Диссер. (ИПХФ РАН, Черноголовка, 2004).
- 2. Добровольский Ю.А., Писарева А.В., Леонова Л.С., Карелин А.И. Новые протонпроводящие мембраны для топливных элементов и газовых сенсоров. Альтернативная энергетика и экология, 2004;12:36-41.