EXAFS STUDY OF YMN₂D₆ SYNTHESIZED UNDER HIGH PRESSURE DEUTERIUM

Mylswamy S.⁽¹⁾, Chen H.⁽¹⁾, Liu R.S.^{(1)*}, Jang L.-Y.⁽²⁾, Yang H.D.⁽³⁾, Paul-Boncour V.⁽⁴⁾, Filipek S.M.⁽⁵⁾

(1)Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C.
(2)National Synchrotron Radiation Research Center, Hsinchu, Taiwan, R.O.C.
(3)Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.
(4)Laboratoire de Chimie Me'tallurgique des Terres Rares, CNRS, Meudon, France
(5)Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
*Fax:+886-2-2363-6359;E-mail: rsliu@ntu.edu.tw

Introduction

YMn₂ compounds have been studied in detail by various groups as it possesses unusual magnetic and electrical properties. These compounds are known to crystallize in C15 cubic structure (Fd-3m) and can form hydrides or deuterides under high pressure of hydrogen or deuterium which results in transformation of structure and modification of physical properties. Synthesis of single phase YMn_2D_x (upto x = 4.5) along with structural transformation studies based on D content has been extensively studied by XRD (X-Ray diffraction), NPD (neutron powder diffraction) and EXAFS (extended X-Ray absorption fine structure) [1–3]. It is well known that magnetic properties of YMn₂ are very sensitive to Mn-Mn distances. Formation of deuteride by absorption of deuterium causes increase of cell parameters and results in structural modification which further influences magnetic properties of basic YMn₂.

We have reported the synthesis of YMn₂D₆ with high deuterium pressure and structural study has been performed both by XRD and NPD [4,5]. XRD structure refinement results show that the structure of the compound is cubic and space group is (*F*-43*m*). In which it was assumed that deuterium atoms occupying interstitial sites of AB₃, A₂B₂ and B₄ of tetrahedral structure in which experimental results show that A₂B₂ sites are most favorable sites and should be filled first before the other two sites filled up. According to NPD studies it is proved that space group of YMn₂D₆ is *Fm-3m* which is a super group of *F-43m* and better refinement results obtained.

In the present investigation we report the Mn K-edge EXAFS results of YMn₂D₆ which is necessary to get more knowledge about the short range order of atoms in YMn₂D₆. Also discussed the bond distances between Mn and Y atoms in the compound which determines the important properties.

Results and Discussion

The YMn₂D₆ sample was synthesized under high pressure of deuterium [3]. EXAFS measurement was carried out using synchrotron radiation with the electron beam energy of 1.5 GeV at the beamline of 17 C of NSRRC (National Synchrotron Radiation Research Center, Taiwan). Measurement was performed at room temperature and the photon energy was calibrated to an accuracy of 0.1 eV according to Mn metal K-edge absorption energies.

The EXAFS spectrum was refined by the program REX 2000. The atomic scattering function R(r) was calculated as the Fourier transformation of $\chi(k)$ multiplied by k^3 . Single scattering r space peaks were selected, a fourier transform was calculated and least-squares fitted with an appropriate model as shown in Fig. 1.

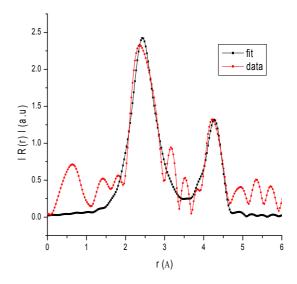


Fig 1. The EXAFS magnitudes |R(r)| of atomic scattering function of YMn_2D_6 at room temperature.

The coordination numbers and interatomic distances from the core atom (Mn2) have been presented in Table 1. Interatomic distances obtained from EXAFS refinement closely resembles NPD results [5] which indicates confirmation of structural pattern positioning atoms in YMn₂D₆ based on space group *Fm*-3*m*.

Table 1. EXAFS parameters and their errors obtained from refinement

Shell	N (coordination	r (Å)
	number)	
Mn2-Mn1	4.038 (0.03)	3.057 (0.07)
Mn2-Y	3.962 (0.03)	2.863 (0.01)
Mn2–Mn2	2.246 (0.02)	4.708 (0.04)

Figure 2 shows the schematic representation of YMn₂D₆ based *Fm*-3*m* space group which was derived from NPD data refinement [5]. Figure 1 shows two peaks for three shells which indicate the merging of Mn2-Mn1 peak and Mn2-Y peak because of reduction in bond distance of Mn-Mn and Mn-Y. Due to this shorter bond distance almost similar to YMn₂D_{4.5} (around 2.9 to 3.0 Å), it is expected to have an ordered magnetic property for YMn₂D₆ also. But due to the formation octahedral cage of D atoms around Mn2 atoms prevents Mn2-Mn1 interaction and which further restricts long range ordered magnetic interactions.

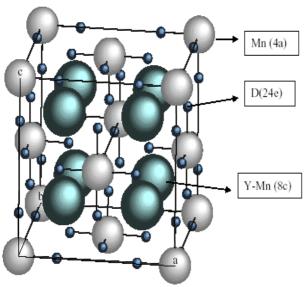


Fig 2. Crystal structure of $YMn_2D_6(Fm-3m)$

Conclusions

The EXAFS measurement of YMn_2D_6 has been conducted at Mn K-edge and refinement results were analysed in continuation of our previous synthesis and characterization of YMn_2D_6 by XRD and NPD studies. It is observed that bond distances obtained by refinement results are very well comparable with NPD data.

Financial support from the National Science Council under the grant number NSC 94-2113-M-002-017 is highly acknowledged.

References

- 1. Latroch M, Paul-Bocour V, Przewoznik J, Percheron-Guegan A, Bouree-Vigneron F. Neutron diffraction study of YMn_2D_x deuterides ($1 \le x \le 3.4$). J Alloys Comp. 1995;231(1-2):99-103.
- 2. Latroch M., Paul-Bocour V., Percheron-Guegan A., Bouree-Vigneron F. Temperature dependence study of YMn₂D_{4.5} by means of neutron powder diffraction. J Alloys Comp. 1998;274(1-2):59-64.
- 3. Przewoznik J., Paul-Bocour V., Latroch M., Percheron-Guegan A. J Alloys Comp. 1996;232: 107-118.
- 4. Wang C.Y., Paul-Boncour V., Kang C.C., Liu R.S., Filipek S.M, Dorogova M., Marchuk I., Hirata T., Percheron-Guegan A., Sheu H-S, Jang L.-Y, Chen J.M., Yang H.D., The novel YMn₂D₆ deuteride synthesized under high pressure of gaseous deuterium. Solid State Commun. 2004;130:815-820.
- 5. Paul-Bocour V., Filipek S.M, Dorogova M., Bouree F., Andre G., Marchuk I., Percheron-Guegan A., Liu R.S. Neutron differaction study, magnetic properties and thermal stability of YMn₂D₆ synthesized under high deuterium pressure. J. Solid State Chem. 2005; 178: 356-362.