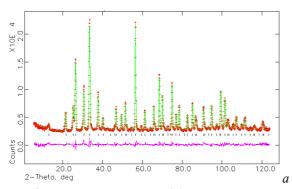
КРИСТАЛЛОХИМИЧЕСКИЙ АНАЛИЗ СТРУКТУРЫ ДЕЙТЕРИДОВ $Ti_{4\text{-}x}Zr_xFe_2O_v$

Завалий И.Ю., Денис Р.В., Ковальчук И.В., Делаплейн Р.¹, Марчук И.²

Физико-механический институт НАН Украины, 79601 Львов, ул. Научная, 5.

- Studsvik Neutron Research Laboratory, Uppsala University, SE-611 82 Nyköping, Sweden
- (2) Institute of Physical Chemistry, PAS, Warsaw, Poland


Введение

Кислород-стабилизированные η -фазы $Zr_4Fe_2O_x$ и Ti₄Fe₂O_x с кристаллической структурой типа Ті2Nі характеризуются интересными водородсорбционными свойствами. Соединения Zr₂Fe (стр.тип CuAl₂) и η -Zr₄Fe₂O_{0.6} демонстрируют различную склонность к диспропорционированию при наводороживании; оба соединения обладают геттерными свойствами при взаимодействии с водородом и другими активными газами. Наоборот, сплавы Ті_{4-х}Fе_{2+х}О_v являются типичными материалами для обратимых водородных аккумуляторов и характеризируются улучшенной активацией в сравнении с безкислородными сплавами Ti-Fe. После отжига при 1000° С сплавы $(Zr,Ti)_4Ni_2O_{0.3}$ состояли в основном из η -фазы со структурой Ті₂Nі на протяжении всего ряда замещений [1].В данной работе нами было показано также существование твердого раствора между η-фазами на основе Ті и Zr в системе Ті-Zr-Fe-О. Дейтериды $Ti_{4-x}Zr_xFe_2O_{0.3-0.5}$ были исследованы методом нейтронографии с целью определения распределения атомов дейтерия в зависимости от соотношения

Ti/Zr и объяснения особенностей изменения водородсорбционных свойств.

Результаты и обсуждение

Нами были изготовлены образцы с различным соотношением Ti/Zr: Ti₄Fe₂O_{0.5}D_{3.5}, Ti₃ZrFe₂O_{0.3}D_{6.4}, $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$ $TiZr_3Fe_2O_{0.3}D_{7.3}$, $Zr_4Fe_2O_{0.5}D_{8.1}$. Синтез дейтеридов осуществляли путем насыщения дейтерием из газовой фазы. Водородсорбционную емкость определяли стандартным волюметрическим методом. Нейтронографические данные получены на приборах NPD (λ =1,47 Å) и R2D2 (λ =1,55 Å) в нейтроновской исследовательной лаборатории Студсвика. Уточнение полученных нейтронографических данных (для некоторых дейтеридов совместно с рентгеновскими данными) проведено методом Ритвельда с помощью программ GSAS и FullProf. Экспериментальный, теоретический и разностный нейтронографические профили дейтеридов $Ti_4Fe_2O_0 _5D_3 _5$ $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$ приведены на рис.1 (а и b), соответственно. Кристаллографические параметры для обоих соединений представлены в табл 1.

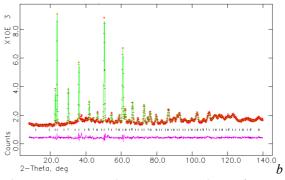


Рис. 1. Экспериментальный (+), теоретический (линия) и разностный (нижняя линия) профили нейтроновской дифракции для(а) $Ti_4Fe_2O_{0.5}D_{3.5}$ и (b) $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$

Таблица 1. Кристаллографические параметры $Ti_4Fe_2O_{0.5}D_{3.5}$ и $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$

Атом	Пози-	Ti ₄ Fe ₂ O _{0.5} D _{3.5} : пр. гр. <i>Fd3m</i> ; <i>a</i> =11.6838(1) Å					Ti ₂ Zr ₂ Fe ₂ O _{0.5} D _{5.8} : пр. гр. <i>Fd3m</i> ; <i>a</i> =12.2982(3) Å				
	ция	х	у	Z	$U_{iso} \times 100$	SOF	х	у	Z	$U_{iso} \times 100$	SOF
*M1	48f	0.3166(2)	1/8	1/8	1.22(7)	1.0(-)	0.3143(5)	1/8	1/8	0.9(2)	1.0(-)
Ti2	16 <i>d</i>	1/2	1/2	1/2	4.2(2)	1.0(-)	1/2	1/2	1/2	0.9(3)	1.0(-)
Fe	32 <i>e</i>	0.70651(6)	0.70651(6)	0.70651(6)	0.92(3)	1.0(-)	0.7010(1)	0.7010(1)	0.7010(1)	1.42(8)	1.0(-)
О	16 <i>c</i>	0	0	0	0.5(-)	0.553(6)	0	0	0	1.41(5)	0.54(3)
D1	$32e_{1}$	_	_	-	_	_	0.033(1)	0.217(1)	0.033(1)	2.6(1)	0.149(9)
T2	$32e_{3}$	_	_	_	_	-	0.062(4)	0.062(4)	0.062(4)	2.6(1)	0.048(9)
D2	192 <i>i</i>	0.500(1)	0.560(2)	0.355(2)	1.5(-)	0.034(2)	0.4806(7)	0.5675(7)	0.3621(6)	2.6(1)	0.201(5)
D3	$96g_1$	0.2799(1)	0.2799(1)	0.1524(2)	1.3(1)	0.437(5)	0.4690(4)	0.4690(4)	0.1554(5)	2.6(1)	0.434(7)
D7	8 <i>a</i>	1/8	1/8	1/8	3.7(2)	1.00(1)	1/8	1/8	1/8	5.7(6)	0.81(4)

^{*}M1= Ti для $Ti_4Fe_2O_{0.5}D_{3.5}$ и M1=0.331(7) Ti+0.669(7) Zr для $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$.

Полученные волюметрические данные свидетельствуют об уменьшении водород-сорбционной емкости при повышении содержания кислорода в исследованных соединениях, и наоборот - Немкость возрастает при увеличении соотношения Zr/Ti. В табл. 2 показано распределение D-атомов по позициям и количество D-атомов на элементарную ячейку для всех изученных дейтеридов в данной работе. Для сравнения мы привели также литературные данные для дейтеридов Ті₄Fe₂OD_{2.25} [2] и Zr₄Fe₂O_{0.25}D_{9.9} [3]. В основном исследованные дейтериды сохраняют кубическую структуру исходной металлической матрицы (стр. тип Ti₂Ni) с расширением объема элементарной ячейки на 13-17%, или 2,3-2,5 ${\rm \AA}^3$ на один атом дейтерия соответственно. Однако, авторы работы [3] наблюдали некоторое искажение металлической матрицы дейтерида $Zr_4Fe_2O_{0.25}D_{9.9}$, и поэтому мы можем увидеть в таблице 2 некоторые особенности распределения D-атомов для этого соединения по сравнению с другими.

Для всех изученных дейтеридов характерно частичное заполнение атомами дейтерия 2-х типов тетраэдров (Zr,Ti)₃Fe (192*i* и 96*g*). В этих пустотах аккумулируется основная часть D-атомов. Октаэдры (Zr,Ti)₆ заполнены в соединениях на основе Ti вплоть до состава $Ti_2Zr_2Fe_2O_{0.5}$. Наоборот, D1позиции внутри тетраэдров (Zr,Ti)₃Fe (или позиции T1 и T2 на треугольных (Zr,Ti)₃ гранях этих тетраэдров) заполняются только в обогащенных цирконием соединениях и степень их заполнения возрастает с увеличением содержания циркония. В целом, заполнение и распределение атомов дейтерия в структуре изученных дейтеридов сильно зависит от соотношения Zr/Ti и содержания кислорода. Нами также показано индуцированное водородом перераспределение атомов кислорода между различными типами октаэдров (Zr,Ti)₆ в дейтеридах $TiZr_3Fe_2O_{0.3}D_{7.3}$ и $Zr_4Fe_2O_{0.5}D_{8.1}$. Подобное явление нами наблюдалось для дейтеридов $Zr_3NiO_xD_v$ и $Zr_3V_3O_xD_v$.

Таблица 2. Заполнение различных пустот атомами дейтерия в дейтеридах $Ti_{4-x}Zr_xFe_2O_y$

Позиция	Коорди-	Число атомов дейтерия на елементарную ячейку									
дейтерия	нация	Ti ₄ Fe ₂ OD ₂₂₅	Ti ₄ Fe ₂ O _{0.5} D _{3.53}	Ti ₃ ZrFe ₂ O ₀₃ D ₆₄	Ti ₂ Zr ₂ Fe ₂ O _{0.5} D _{5.82}	TiZr ₃ Fe ₂ O ₀₃ D ₇₃	Zr ₄ Fe ₂ O ₀₅ D _{8,1}	Zr ₄ Fe ₂ O ₀₂₅ D ₉₉			
D1 in 32e ₁	M ₁₃ Fe	-	-	_	4.77	_	21.66	22.11			
T1 in $32e_2$	$M1_3$	_	_	_	_	16.96	7. 2	6.46			
T2 in $32e_3$	$M1_3$	_	_	5.12	1.54	2.69	11.94	_			
D2 in 192 <i>i</i>	$M1_2M2Fe$	18.72	6.53	21.89	38.59	35.33	58.75	49.92			
D3 in 96g ₁	M ₃ Fe	8.72	41.95	68.93	41.66	61.44	27.36	45.02			
D4 in 96g ₂	$M1M2Fe_2$	_	_	_	_	_	_	6.86**			
D5 in 8 <i>b</i>	Fe ₄	_	_	_	_	_	_	2.08			
D6 in $32e_4$	M1Fe ₃	_	_	_	_	_	_	_			
D7 in 8a	$M1_6$	8	8	5.76	6.48	_	_	_			
D8 in 16 <i>c</i>	$M1_6$	_	_	_	_	_	_	_			
Сумма		35.44	56.48	101.70	93.04	116.42	126.91	132.45			

^{*} М соответственно Ті и/или Zr;

Выводы

Методами рентгеноструктурного и нейтронографического анализа исследована кристаллическая структура насыщенных дейтеридов модифицированных кислородом соединений ($Ti,Zr)_4Fe_2O_x$ (x=0.3; 0.5). Изучено и проанализировано распределение D-атомов в металлической матрице в зависимости от соотношения Ti/Zr и содержания кислорода. Проведено сравнение полученных кристаллографических данных и структур других кислород-стабилизированных η -фаз на основе Ti и Zr.

Данная работа выполнена при поддержке Шведского института (программа Висби), а также при содействии в проведении эксперимента Г. Рундлофа и А. Ванберга.

Литература

- [1] Zavaliy I.Yu., Woicik G., Mlynarek G. *et al.* Phase-structural characteristics of $(Ti_{1-x}Zr_x)_4Ni_2O_{0.3}$ alloys and their hydrogen gas and electrochemical properties. J. Alloys Comp., **314**, 124 (2001).
- [2] C.Stioui, D.Fruchart, A. Rouaut *et al.*, Crystal structure of the Ti₄Fe₂OD_{2.25} deuteride. Mat. Res. Bull. **16**, 869 (1982).
- [3] I.Yu. Zavaliy, A.O. Pecharsky, R. Cerny, *et al.* Crystal structure and properties of Zr₄Fe₂O_xH_y. Proc. of 20-th European Crystallographic Meeting (ECM'2001), Krakow, 2001, p.304.

^{**} эта позиция соответствует 48(f) (0.7795,1/8,1/8), которая заполняется только в $Zr_4Fe_2O_{025}D_{99}$.