CRYSTAL STRUCTURE ANALYSIS OF Ti_{4-x}Zr_xFe₂O_v DEUTERIDES

Zavaliy I.Yu., Denys R.V., Koval'chuck I.V., Delaplane R.G.¹, Marchuk I.²

Physico-Mechanical Institute of NAS of Ukraine, 5 Naukovaz Str., 79601 Lviv, Ukraine

- (1) Studsvik Neutron Research Laboratory, Uppsala University, SE-611 82 Nyköping, Sweden
- (2) Institute of Physical Chemistry, PAS, Warsaw, Poland

Introduction

The $Zr_4Fe_2O_x$ and $Ti_4Fe_2O_x$ oxygen-stabilised n-phases with the filled-Ti₂Ni type of crystal structure show interesting hydrogenation properties. The hydrogenation behaviour of Zr₂Fe (CuAl₂-type) and η-Zr₄Fe₂O_{0.6} compounds is considerably different with respect to their disproportionation; both are characterised by getter properties during the interaction with hydrogen and other active gases. In contrast, Ti_{4-x}Fe_{2+x}O_v alloys behave as typical materials for reversible hydrogen storage and are characterised by enhanced activation in comparison with oxygenfree Ti-Fe alloys. It has been shown that (Zr,Ti)₄Ni₂O_{0.3} alloys annealed at 1000°C contain the η-phase with the filled Ti₂Ni-type of structure as dominant in the whole range of substitution [1]. In our work the continuous solid solution between Tiand Zr-based η -phases was determined also in the Ti-Zr-Fe-O system. The synthesised deuterides Ti_{4-x}Zr_xFe₂O_(0.3-0.5) have been investigated by neutron diffraction to determine the distribution of deuterium atoms depending on the Ti/Zr ratio and to explain the peculiarities of hydrogenation properties.

Results and discussion

We prepared the samples with the different Ti/Zr ratios: $Ti_4Fe_2O_{0.5}D_{3.5}$, $Ti_3ZrFe_2O_{0.3}D_{6.4}$, $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$ TiZr₃Fe₂O_{0.3}D_{7.3}, Zr₄Fe₂O_{0.5}D_{8.1}. The deuterides were synthesised by deuterium gas charging. Their absorption capacity has been determined by a standard volumetric technique. Powder neutron diffraction data were collected on the NPD (λ =1.47 Å) and R2D2 (λ =1.55 Å) instruments at the Studsvik Neutron Research Laboratory. Obtained neutron diffraction data were refined (for some deuterides jointly with X-ray diffraction data) by the Rietveld method using GSAS software. The observed, calculated and difference profiles of the $Ti_4Fe_2O_{0.5}D_{3.5}$ and $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$ deuterides are shown as an examples in Fig.1 (a, b), respectively. The crystallographic data for both compounds are collected in the Table 1.

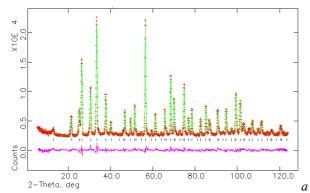


Fig. 1. The observed (+), calculated (line) and difference (lower line) neutron powder diffraction profiles for (a) $Ti_4Fe_2O_{0.5}D_{3.5}$ and (b) $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$

Table 1. Crystallographic data for Ti₄Fe₂O_{0.5}D_{3.5} and Ti₂Zr₂Fe₂O_{0.5}D_{5.8}

Atom	Site	$Ti_4Fe_2O_{0.5}D_{3.5}$: sp. gr. $Fd3m$; $a=11.6838(1)$ Å					$Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$: sp. gr. $Fd3m$; $a=12.2982(3)$ Å				
		x	У	Z	$U_{iso} \times 100$	SOF	x	у	Z	$U_{iso} \times 100$	SOF
*M1	48f	0.3166(2)	1/8	1/8	1.22(7)	1.0(-)	0.3143(5)	1/8	1/8	0.9(2)	1.0(-)
Ti2	16 <i>d</i>	1/2	1/2	1/2	4.2(2)	1.0(-)	1/2	1/2	1/2	0.9(3)	1.0(-)
Fe	32 <i>e</i>	0.70651(6)	0.70651(6)	0.70651(6)	0.92(3)	1.0(-)	0.7010(1)	0.7010(1)	0.7010(1)	1.42(8)	1.0(-)
О	16 <i>c</i>	0	0	0	0.5(-)	0.553(6)	0	0	0	1.41(5)	0.54(3)
D1	$32e_{1}$	_	_	_	-	_	0.033(1)	0.217(1)	0.033(1)	2.6(1)	0.149(9)
T2	$32e_{3}$	_	_	_	_	-	0.062(4)	0.062(4)	0.062(4)	2.6(1)	0.048(9)
D2	192 <i>i</i>	0.500(1)	0.560(2)	0.355(2)	1.5(-)	0.034(2)	0.4806(7)	0.5675(7)	0.3621(6)	2.6(1)	0.201(5)
D3	$96g_{1}$	0.2799(1)	0.2799(1)	0.1524(2)	1.3(1)	0.437(5)	0.4690(4)	0.4690(4)	0.1554(5)	2.6(1)	0.434(7)
D7	8 <i>a</i>	1/8	1/8	1/8	3.7(2)	1.00(1)	1/8	1/8	1/8	5.7(6)	0.81(4)

^{*}M1= Ti for $Ti_4Fe_2O_{0.5}D_{3.5}$ and M1= 0.331(7) Ti + 0.669(7) Zr for $Ti_2Zr_2Fe_2O_{0.5}D_{5.8}$.

The observed volumetric data showed a decrease of hydrogen storage capacity with the rise in oxygen content in the studied compounds, and the contrary, the increase of H-capacity with increase of the Zr/Ti ratio. We present in Table 2 the distribution of D-atoms among the interstitial sites and total number of deuterium atoms per unit cell for all studied deuterides in this work. We also included the literature values for $Ti_4Fe_2OD_{2.25}$ [2] and $Zr_4Fe_2O_{0.25}D_{9.9}$ [3] deuterides for comparison. In general the analysed deuterides retained the initial cubic Ti₂Ni-type of structure of metal matrix with the unit-cell volume expanded by 13-17%, which corresponds to 2.3-2.5 Å³ per absorbed D atom. However, the authors of [3] observed some distortions of the metal matrix in the Zr₄Fe₂O_{0.25}D_{9.9} deuteride, and therefore we can observe in the table below some peculiarities of D-distribution for this compound in comparison with others.

Deuterium atoms in all studied deuterides partially occupy 2 types of (Zr,Ti)₃Fe tetrahedra (192*i* and 96*g*). These interstices accumulate most of the D-atoms. The (Zr,Ti)₆ octahedra are occupied for Ti-based compounds up to composition Ti₂Zr₂Fe₂O_{0.5}. On the contrary, D1site surrounded by other (Zr,Ti)₃Fe tetrahedron (or T1 and T2 sites on (Zr,Ti)3 triangular face of this tetrahedron) is occupied only for Zr-rich compounds and this occupation increases with the increase of Zr-content. Commonly, the occupancy and distribution of D-atoms in the structure of the studied deuterides depends strongly on the Zr:Ti ratio and oxygen content. We also found the hydrogen-induced redistribution of oxygen atoms between different types of (Zr,Ti)₆ octahedra in the $TiZr_3Fe_2O_{0.3}D_{7.3}$ and $Zr_4Fe_2O_{0.5}D_{8.1}$ deuterides. A similar phenomenon was observed recently for $Zr_3NiO_xD_y$ and $Zr_3V_3O_xD_y$ deuterides.

Table 2. Occupation of various interstitial sites by deuterium atoms in Ti_{4-x}Zr_xFe₂O_v deuterides

Deuterium	Coordi-	Number of deuterium atoms per unit cell								
sites	nation	Ti ₄ Fe ₂ OD ₂₂₅	Ti ₄ Fe ₂ O _{0.5} D _{3.53}	Ti ₃ ZrFe ₂ O _{0.3} D _{6.4}	Ti ₂ Zr ₂ Fe ₂ O _{0.5} D _{5.82}	TiZr ₃ Fe ₂ O ₀₃ D ₇₃	Zr ₄ Fe ₂ O _{0.5} D _{8.1}	Zr ₄ Fe ₂ O _{0.25} D _{9.9}		
D1 in $32e_1$	M ₁₃ Fe	_	_	_	4.77	_	21.66	22.11		
T1 in $32e_2$	$M1_3$	_	_	_	_	16.96	7. 2	6.46		
T2 in $32e_3$	$M1_3$	_	_	5.12	1.54	2.69	11.94	_		
D2 in 192 <i>i</i>	$M1_2M2Fe$	18.72	6.53	21.89	38.59	35.33	58.75	49.92		
D3 in $96g_1$	M_3 Fe	8.72	41.95	68.93	41.66	61.44	27.36	45.02		
D4 in 96g ₂	$M1M2Fe_2$	_	_	_	_	_	_	6.86**		
D5 in 8 <i>b</i>	Fe_4	_	_	_	_	_	_	2.08		
D6 in $32e_4$	$M1Fe_3$	_	_	_	_	_	_	_		
D7 in 8 <i>a</i>	$M1_6$	8	8	5.76	6.48	_	_	_		
D8 in 16 <i>c</i>	$M1_6$	_	_	_	-	_	_	_		
Total		35.44	56.48	101.70	93.04	116.42	126.91	132.45		

^{*} M corresponds to Ti and/or Zr;

Conclusions

The crystal structure of several saturated deuterides of oxygen-modified intermetallic compounds $(Ti_zT)_4Fe_2O_x(x=0.3;0.5)$ has been investigated by both X-ray and neutron powder diffraction. The distribution of D-atoms in the metal matrix has been determined and analysed in function of the Ti/Zr and oxygen content. The obtained crystallographic data were compared with the structural results for other oxygen-stabilised Ti/Zr-based η -phases.

Acknowledgements

Travel funds from the Visby Programme of the Swedish Institute are gratefully acknowledged. We thank H. Rundlöf and A. Wannberg for skilled assistance with data collection.

References

- [1] Zavaliy I.Yu., Woicik G., Mlynarek G. *et al.* Phase-structural characteristics of $(Ti_{1-x}Zr_x)_4Ni_2O_{0.3}$ alloys and their hydrogen gas and electrochemical properties. J. Alloys Comp., **314**, 124 (2001).
- [2] C.Stioui, D.Fruchart, A. Rouaut *et al.*, Crystal structure of the $Ti_4Fe_2OD_{2.25}$ deuteride. Mat. Res. Bull. **16**, 869 (1982).
- [3] I.Yu. Zavaliy, A.O. Pecharsky, R. Cerny, *et al.* Crystal structure and properties of Zr₄Fe₂O_xH_y. Proc. of 20-th European Crystallographic Meeting (ECM'2001), Krakow, 2001, p.304.

^{**} this site occupation corresponds to 48(f) position (0.7795,1/8,1/8), which is occupied only in Zr₄Fe₂O₁₂₅D₅₉.