К ВОПРОСУ ВЛИЯНИЯ ДАВЛЕНИЯ НА ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ГИДРИДОВ МЕТАЛЛОВ

Горячев Ю.М., Дехтярук В.И., Симан Н.И., Фиялка Л.И.

Ин-т проблем материаловедения им. И.Н. Францевича НАНУкр. 03142, Киев, ул. Кржижановского, 3, e-mail: phil02@ukr.net

Из литературных и собственных данных известно [1,2,3], что термодинамические свойства соединений зависят от их упруго динамических характеристик и факторов внешнего воздействия на них. Для ряда гидридов эти характеристики авторами были рассчитаны. Рассчитывались следующие термодинамические функции: энтальпия ($\Delta H^{o}_{293 \text{ K}}$), теплоемкость (C_p^o) , энтропия (S^o) и свободная энергия (потенциал Гиббса) – $\Delta \Phi^{o}_{293 \text{ K}}$. Методика расчета заключалась в следующем. Исходя из расчета методом ГО ЛКАО энергии атомизации $(E_a, eV/at)$ исследуемых объектов, проводился следующий количественный анализ их упругодинамического состояния рамках приближений однопараметрической энергии межатомного взаимодействия [2]. Вычислялись упругий модуль всестороннего сжатия (β , Π a), температура плавления (T_m , K), температура Дебая (θ_D , K), коэффициент линейно-термического расширения (α_T , K^{-1}), коэффициент теплопроводности (λ ,Вт/см·К); коэффициент теплоемкости (C_p ,Дж/мол.К). Для нормальных условий получены следующие соотношения:

$$\begin{split} \beta &= (z \cdot E_a \cdot 1,602 \cdot 10^{-12}) \, / \, (27d^3); \\ T_m &= (E_a \cdot 1,602 \cdot 10^{-12}) \, / \, (41 \cdot k); \\ \theta_D &= 2,75 \cdot 10^6 \cdot (E_a \, / \, A)^{0,5} \cdot \hbar \, / (d \cdot k); \\ \alpha_T &= 3. \, k \, / \, (z \cdot E_a \cdot 1,602 \cdot 10^{-12}); \\ \lambda_\phi &= z^{0,5} \cdot E_a \cdot k \cdot 4.10^{-21} \, / \, (d \cdot \hbar); \\ C_p &= (8.3 \cdot 10^{16} \cdot k \, T^2 / \theta_D^2) \cdot (1.5 - T / \theta_D) \, \, \partial \pi \pi \, \, T < \theta_D. \\ \Delta H_T &= -E_a + \int C_p \, dT; \, \Delta S_T = \int (C_P / T) \, dT; \\ \Delta \Phi_T &= \Delta H_T - T \cdot \Delta S_T. \end{split}$$

Здесь E_a — энергия атомизации (эВ/ат), z — координационное число ближайшего окружения, d — среднее расстояние между атомами в таком окружении (см), k=1,38·10⁻¹⁶,эрг.К⁻¹, \hbar = 1,05·10⁻²⁷, эрг.сек. (постоянные Больцмана и Планка соответственно), A — атомный вес в атомных единицах.

Для учета влияния давления и температуры использованы следующие зависимости:

$$\beta(P) = \frac{1}{(1/\beta_0 - k \times P/\beta_0^2)},$$

$$\beta(T) = 0.4\beta_0 \times (1.5 + \frac{Tm - T}{Tm}).$$

Исходя из этих соотношений, определялись температурные и барические зависимости упруго-динамических характеристик и термодинамических функций исследуемых объектов. Результаты расчёта их для шести гидридов IV-ой группы элементов при нормальных условиях приведены в таблице 1.

Таблица 1. Упруго-динамические характеристики гидридов IV-ой группы эпементов

Гидрид	Ti H	Zr H	Hf H
Еа, эВ/ат	3.8	4.7	5.0
β, 10 ¹¹ Πa	10.2	12.6	13.4
T _m , K	1080	1330	1420
Θ _D , K	858	696	515
α _T , 10 ⁻⁶ K ⁻¹	17	13.7	12.9
λ _f ,Дж/см.сек.К	0,52	0.643	0.685
СР, Дж/г.К	1.61	3.13	3.57
ΔН, эВ/ат	- 3.79	-4.68	-4.98
ΔS, эВ/(ат.К)	2.1.10 ⁻⁴	2.9.10 ⁻⁴	4.6.10 ⁻⁴
ΔФ, эВ/ат	-3.73	-4.60	-4.84
Гидрид	Ti H ₂	Zr H ₂	Hf H ₂
Еа, эВ/ат	Ti H ₂	Zr H ₂ 3.8	Hf H ₂ 4.0
Еа, эВ/ат	_	_	_
	3.1	3.8	4.0
E _a , 9B/aτ β, 10 ¹¹ Πα Τ _m , Κ Θ _D , Κ	3.1 8.32	3.8	4.0
E _a , 9B/aτ β, 10 ¹¹ Πα Τ _m , Κ Θ _D , Κ	3.1 8.32 878	3.8 10.2 1080	4.0 10.7 1130
E _a , 9B/aτ β, 10 ¹¹ Πα Τ _m , Κ	3.1 8.32 878 942	3.8 10.2 1080 762	4.0 10.7 1130 562
$\begin{array}{c} E_{a}, 9B/aT \\ \beta, 10^{11} \Pi a \\ T_{m}, K \\ \Theta_{D}, K \\ \alpha_{T}, 10^{-6} K^{-1} \end{array}$	3.1 8.32 878 942 20.8	3.8 10.2 1080 762 17	4.0 10.7 1130 562 16.2
$\begin{array}{c} E_{a}, 9B/aT \\ \beta, 10^{11} \ \Pi a \\ T_{m}, K \\ \Theta_{D}, K \\ \alpha_{T}, 10^{-6} \ K^{-1} \\ \lambda_{f}, J\!$	3.1 8.32 878 942 20.8 0.424 1.37 -3.09	3.8 10.2 1080 762 17 0.520 1.96 -3.79	4.0 10.7 1130 562 16.2 0.548 3.15 -3.98
E_{a} , $9B/aT$ β , 10^{11} Па T_{m} , K Θ_{D} , K α_{T} , 10^{-6} K^{-1} λ_{f} ,Дж/см.сек. K C_{P} , Дж/ Γ . K	3.1 8.32 878 942 20.8 0.424 1.37	3.8 10.2 1080 762 17 0.520 1.96	4.0 10.7 1130 562 16.2 0.548 3.15

Результаты расчёта аналогичных характеристик для 1-ой группы SP-элементов приведены в таблице 2

В приведенных данных видны следующие закономерности:

- С увеличением главного квантового числа элемента IV-ой группы межатомное взаимодействие в гидридах усиливается.
- При увеличении отношения H/Me сила межатомного взаимодействия ослабевает.

Таблица 2. Упруго-динамические характеристики гидридов І-ой группы элементов.

етики тидридов г он группы элементов.					
Na H	ΚH	Rb H			
1.93	1.79	1.73			
6.08	1.85	1.56			
546	507	490			
922	473	303			
33.5	36.1	37.3			
0.279	0.178	0.165			
1.42	3.99	5.72			
-1.92	-1.76	-1.69			
1.8.10 ⁻⁴	5.1.10 ⁻⁴	7.4.10 ⁻⁴			
	1 60	1 1 -			
-1.87	-1.60	-1.47			
-1.87 Na H ₂	-1.60 K H ₂	-1.47 Rb H ₂			
Na H ₂	K H ₂	Rb H ₂			
Na H ₂ 2.00	K H ₂	Rb H ₂			
Na H ₂ 2.00 5.04	K H ₂ 1.90 1.96	Rb H ₂ 1.85 1.67			
Na H ₂ 2.00 5.04 566	K H ₂ 1.90 1.96 538	Rb H ₂ 1.85 1.67 524			
Na H ₂ 2.00 5.04 566 1050	K H ₂ 1.90 1.96 538 590	Rb H ₂ 1.85 1.67 524 382			
Na H ₂ 2.00 5.04 566 1050 32.3	K H ₂ 1.90 1.96 538 590 34	Rb H ₂ 1.85 1.67 524 382 35			
Na H ₂ 2.00 5.04 566 1050 32.3 0.268 1.14 -1.99	1.90 1.96 538 590 34 0.189 2.94	Rb H ₂ 1.85 1.67 524 382 35 0.176 5.07 -1.86			
Na H ₂ 2.00 5.04 566 1050 32.3 0.268 1.14	1.90 1.96 538 590 34 0.189 2.94	Rb H ₂ 1.85 1.67 524 382 35 0.176 5.07			
	Na H 1.93 6.08 546 922 33.5 0.279 1.42 -1.92 1.8.10 ⁻⁴	Na H K H 1.93 1.79 6.08 1.85 546 507 922 473 33.5 36.1 0.279 0.178 1.42 3.99 -1.92 -1.76 1.8.10-4 5.1.10-4			

Сравнительный анализ приведенных данных показывает, что при переходе к 1-ой группе элементов картина меняется на обратную.

Результаты расчёта барических зависимостей упруго-динамических и термодинамических характеристик на примере ZrH_2 приведены в таблице 3.

Таблица 3. Барические зависимости свойств гидрида циркония ZrH_2

своиств гидрида циркония 2.1112					
P,10 ¹¹ Па	0	0,1	1	3	5
β,10 ¹¹ Πa	10	10	11	15	20
Еат,эВ/ат	4.7	4.7	5	5.5	7.2
-ΔН,эВ/ат	4.7	4.7	4.8	5	7.0
-ΔФ,эВ/ат	4.6	4.6	4.7	4.9	6.8

Из приведенных данных видно, что с увеличением давления в исследованных гидридах межатомное взаимодействие увеличивается, что приводит к увеличению предельного насыщения гидридов водородом и может способствовать сохранению его в метастабильном состоянии при снятии давления.

Над гидридами любого состава рассчитаны равновесные давления водорода. Для этого проанализированы изменения свободной энергии атомизации ($\Delta\Phi_{np}$) следующего физико-химического преобразования:

$$MeH_x=[Me]+x/2.H_2$$
 \longrightarrow $\Delta\Phi_{np}(x)$.

$$3$$
десь: $\Delta\Phi_{np}(x)=\Delta\Phi(Me)+x/2.\Delta\Phi(H_2)-\Delta\Phi(MeH_x),$

[Me] = 1/(1+x).

Рассмотрено состояние термодинамического равновесия:

$$Ln K_P = \Delta \Phi_{np}(x)/(kT); K_P = [Me].P^{X/2}_{H2}.$$
 Отсюда выведено соотношение:

$$P_{H2} = [(1+x).\exp(\Delta\Phi_{np}(x)/(kT))]^{2/x}.$$

С применением реперной подгонки на конденсированный водород рассчитаны равновесные давления водорода и соответствующие им "х". Результаты приведены в табл.4.

Таблица 4. Предельное насыщение водородом гидрилов (х в MeH_v)

тидридов (х в містіх)					
MeH_X	P,10 ⁵ Πa T,°C	1	10	10 ²	10^3
	600	1.4	1.9	2.5	3.4
TiHx	700	1.0	1.4	1.9	2.7
Τ	800	0.6	0.8	1.2	1.8
	600	2.4	3.1	3.9	5.3
ZrH_X	700	2.0	2.6	3.3	4.5
Z	800	1.6	2.0	2.7	3.7
,	600	3.0	3.8	4.9	6.5
$\mathrm{HfH}_{\mathrm{X}}$	700	2.6	3.3	4.2	5.7
Н	800	2.2	2.8	3.6	5.0

Из приведенных данных видно, что при высоких давлениях водорода можно получать гидриды очень высокой степени поглощения водорода (до MeH₇). Теперь проблема сводится к изысканию метода фиксации таких состояний при нормальных условиях.

Литература

- 1. Воловик Л. С., Баженова Л. Ю., Болгар А. С. и др. Термодинамические свойства переходных металлов // Изв. АН СССР. Неорган. материалы. -1979.-15, № 4.- С. 638-642.
- 2. Горячев Ю. М. Автореферат дис. докт. ф.-м. н. Киев, ИПМ, АН УССР, 1983, 33с.
- 3. Горячев Ю. М., Симан Н.И. и др..Гидриды титана и метод ГОЛКАО. Сб. Электронное строение и свойства тугоплавких соединений и сплавов. Киев, ИПМ НАНУкр., 2000. С. 112-118.