ЛОКАЛЬНЫЕ ГРАДИЕНТЫ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ И БАРЬЕРЫ ЗАТОРМОЖЕННОГО ВРАЩЕНИЯ В КОМПЛЕКСНЫХ ДЕЙТЕРИДАХ ГАЛЛИЯ

Тарасов В.П., Киракосян Г.А., Бакум С.И.

Институт общей и неорганической химии РАН, г. Москва, Россия

Комплексные гидриды галлия МGaH₄, М-щелочной металл, относятся к ионным соединениям И кристаллизуются орторомбической сингонии с пр.гр С_{торо} для NaGaH₄ и Р_{пта} для калиевой, рубидиевой и цезиевой солей, Z=4 [1]. Кристаллическая сформирована ИЗ решетка компактных анионов GaH₄ и катионов щелочного металла Анион GaH₄ представляет искаженный тетраэдр c расстояниями r(Ga-H) = 1,497-1,538A при практически тетраэдрическом угле \angle H-Ga-H = 109.7° [2,3]. Искажение аниона зависит от типа катиона и проявлятся В значениях градиентов электрических полей (ГЭП) в позициях галлия. кристаллической решетки Влияние распределение ГЭП отражаеться в значениях ГЭП в позициях катиона [4]. В настоящей работе сообщаются результаты измерения спин-решеточной релаксации времени дейтерия параметров изотопов (T_1) И квадрупольного взаимодействия (константа квадрупольного взаимодействия (ККВ) Со и параметр асимметрии тензора ГЭП п) в позициях дейтерия, галлия и катиона в серии кристаллических комплексных галлогидридов $NaGaD_4$, $NaGa(H_{2,6}D_{1,4})$, $KGaD_4$, $KGa(H_{2,6}D_{1,4})$, RbGaD₄, CsGaD₄. Измерения были проведены диапазоне 95-375К стационарным и импульсным методом ядерного магнитного резонанса в поляризующих магнитных полях B_0 = 1,4T, 1,88T и 7,04T на изотопах 2 H, 23 Na, 39 K, 87 Rb, 133 Cs, 69,71 Ga. При всех значения B_0 форма линии ЯМР ³⁹К, ⁸⁷Rb и ^{69,71}Ga отражает только центральный переход $\pm 1/2$, возмущенный квадрупольными взаимодействиями 2-ого порядка, а форма линии ЯМР ²³Na и ¹³³Cs проявляет сателлитный контур за счет квадрупольных взаимодействий 1-ого порядка Температурное изменение формы линий ЯМР на всех позициях ядер (катион, галлий, дейтерий) свидетельствует о реализации заторможенной реориентации аниона GaD_4 или $Ga(H_{2.6}D_{1.4})$ около центра тяжести по кристаллографически разрешенным позициям водорода/дейтерия. температурном диапазоне реориентация аниона приводит к полное

усреднение ГЭП в позициях дейтерия и натрия. Температурная эволюция формы линии ЯМР ²Н характеризуется монотонным переходом от характерного для жесткой дублетного решетки контура одиночной линии, соответствующей реориетации аниона GaD_4 . изотропной Энергия активации Е_а и время корреляции т₀ реориентаций определены из температурной зависимости $T_1(^2H)$, которая имеет типичный V-образный вид с минимумом. Из значений $T_{1min}(T)$ вычислены ККВ 2 Н для жесткой решетки C_{Q}^{*} , которые сопоставлены с соответствующими величинами Со, полученными из дублетного контура спектра ЯМР²Н при η≤0,1. В позициях изотопов галлия и ядер катиона (K,Rb,Cs) значения ККВ усредняются при вращении аниона, т.к. ни поворот аниона GaD_4 как целого вокруг собственных осей, ни обмен местами атомов дейтерия не изменяют распределение зарядов вокруг тяжелых атомов. Температурные зависимости ККВ Со в позициях галлия и катиона (кроме натрия) слабые $(-1 \times 10^{-4} \text{ град}^{-1})$ и описываются формулой

 $C_{O}(T)=C_{O}(0)\{1-kT/8\pi^{2}Iv_{1}^{2}\},\$ где $C_0(0)$ –экстраполированная ККВ к $T \rightarrow 0$, Iмомент инерции GaD_4 , равный 21.4×10^{-40} $r \times cm^2$, v_1 -частота либраций ~35 cm^{-1} . Для KGaD₄ и RbGaD₄ параметры асимметрии η в позициях галлия и катиона уменьшаются с ростом температуры и имеют практически такую же температурную зависимость, как Со. Этот результат свидетельствует о небольшом росте разности компонентов (q_{xx} - q_{yy)} тензора ГЭП при изменениях температуры, т.к. $q_{xx}+q_{yy}+q_{zz}=0$, $\eta = |q_{yy}-q_{xx}|/q_{zz}$, $q_{zz} = hC_0/e^2Q$. Для CsGaD₄ ориентация компонентов тензора анионной И катионной сохраняется, т.к. параметр $\eta(^{69,71}\text{Ga})$ растет с повышением температуры за счет понижения C_0 , а $\eta(^{133}C_s)$ остаётся постоянным. Для NaGaD₄ с изменение температуры происходит изменение ориентаций и величин компонентов тензора ГЭП в позициях галлия, что связано со структурным фазовым переходом при 290К. В таблице приведены ККВ С_Q и параметры

асимметрии η , полученные при наиболее низких температурах (100-115K) и активационные параметры E_a и τ_0 реориентационного

движения аниона. Работа выполнена при поддержке РФФИ (проект №03-03-32812)

Соединение	Позиция	Позиция аниона	ККВ ² Н, кГц	Энергия активации Еа
комплексного	катиона, М ⁺ ,	GaD_4^- ,	C_0^* C	(кДж/моль) и
гидрида галлия с	ККВ, МГц	ККВ (МГц)	17	предэкспоненциальный
катионом	Изотоп C_Q ; η	⁶⁹ Ga ⁷¹ Ga η	±7 ±2	фактор $\tau_0 (\times 10^{-16} \text{ c})$
щелочного	,	$\pm 0,3$ $\pm 0,3$ $\pm 0,20$		E_a $ au_0$
металла				±10% ±40%
NaGaD ₄	²³ Na 0,5 0,44		89,6 70	34,7 3,1
NaGaH _{2,6} D _{1,4}	-	5,9 3,8 0,50	90,6 67	35,2 2,1
KGaD ₄	³⁹ K 0,61 0,5	7,2 4,8 0,46	78,0 60	38,3 24
KGaH _{2,6} D _{1,4}	-	6,9 4,5 0,51	78,0 72	40,6 7,7
RbGaD ₄	⁸⁷ Rb 3,42 0,25	7,4 4,9 0,48	83,8 65	33,5 65
CsGaD ₄	¹³³ Cs 0,14 0,1	6,8 4,2 0,38	86,3 76	25,8 140

Литература

- 1. Ковба Л.М., Горбунов В.Е., Гавричев К.С.// Ж.Неорг.Хим. 1986, т.31(1), с.260
- 2. Irodova A.V., Somenkov V.A., Bakum S.I., Kuznetsova S.F.// Z.Phys.Chem Neue Folgs, 1989, Bd.163, S.239
- 3. Бакум С.И., Иродова А.В., Кузнецова С.Ф., Ляховицкая О.И., Нозик Ю.З., Соменков В.А. // Коорд.Хим. 1990, т.16(9), с.1210
- 4. Тарасов В.П., Киракосян Г.А., Бакум С.И., Шамов А.А. // Ж.Неорг.Хим. 1992, т.37(5), с.1153