ФАЗОВЫЕ РАВНОВЕСИЯ В ГИДРИДАХ ИНТЕРМЕТАЛЛИДОВ В МОДЕЛИ НЕИДЕАЛЬНОГО (ВЗАИМОДЕЙСТВУЮЩЕГО) РЕШЕТОЧНОГО ГАЗА

Маринин В.С.*, <u>Шмалько Ю.Ф.</u>, Умеренкова К.Р.

Институт проблем машиностроения им. А.Н.Подгорного НАН Украины, ул. Пожарского 2/10, Харьков, 61046 Украина *Факс: 38 (0572) 944 635 E-mail: vsmarinin@yahoo.com

Ввеление

Работа посвящена описанию наблюдаемых особенностей фазовых равновесий в гидридах интерметаллидов в рамках модели неидеального решеточного газа. В качестве объекта исследования выбрано соединение Особый интерес представляет положение критической точки α - β -перехода, параметров которой экспериментальные сведения отсутствуют.

Результаты и обсуждение

Применение интерметаллических соединений (ИМС) в качестве рабочих тел термосорбционных компрессоров, тепловых насосов, систем хранения, очистки и обогащения водорода обусловлено прежде всего тем, что гидриды ИМС с большой сорбционной емкостью образуются при сравнительно мягких термодинамических условиях.

Новый подход [1] к данной проблеме состоит в определении свойств как водородной подсистемы гидрида, так и равновесной с ним молекулярной фазы Н2 в рамках единого метода модифицированной схемы возмущений (МТВ) [2]. Термодинамическое описание водородной подсистемы проведено на базе модели неидеального (взаимодействующего) решеточного газа атомов водорода. При этом учтены как прямое взаимодействие между атомами водорода, так косвенные "деформационные" вклады в потенциальную энергию вследствие расширения решетки при растворении водорода.

Отметим, что исходная кристаллическая структура ИМС в подавляющем большинстве случаев не отличается от структуры металлической матрицы в гидридных фазах систем ИМС-водород в области неупорядоченных α - и β -фаз. В этом случае химический потенциал $\mu_{\rm H}$ = $G_{\rm H}/N_{\rm H}$ Н-компонента гидрида ИМС (т.е. удельная, на атом H, энергия Гиббса $G_{\rm H}$) имеет вид:

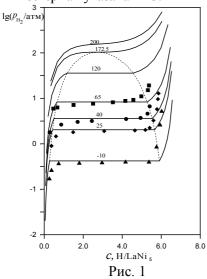
$$\beta \mu_H^+(\theta, T) = \ln \frac{\theta}{1 - \theta} + \frac{W_1 \theta}{T(1 + ac_s \theta)} + \frac{W_2 \theta^2}{T^2(1 + ac_s \theta)^2}, (1)$$

где $\beta = 1/kT$; $\mu_H^+ = \mu_H - \mu_H^{st}$; $\mu_H^{st}(T)$ — химический потенциал в стандартном состоянии $\theta = C/C_s$ – относительная концентрация водорода (степень заполнения междоузлий, доступных для внедрения H-атомов); $C = n_{\text{IMC}} \cdot c$ – концентрация водорода в виде отношения Н/ІМС, т.е. на формульную единицу ИМС; n_{IMC} – число атомов формульной единице; cконцентрация Н в единицах Н/Ме, т.е. на один атом матрицы; $\alpha = c^{-1}(\Delta V(c)/V)$ – коэффициент дилатации решетки ИМС при растворении водорода. Величины C_s (сорбционная емкость ИМС) и c_s (максимальная концентрация занятых междоузлий) связаны соотношением $c_s = C_s / n_{\text{IMC}}$.

Постоянные W_1 и W_2 , обеспечивающие связь между макроскопическими свойствами растворов внедрения ИМС-водород и микроскопическими (атомными) характеристиками водородной подсистемы и металлической матрицы ИМС, равны:

$$W_1 = 2I_1 n_M (\sigma_1^3 / v_0) E_1 c_s$$
, $W_2 = (3I_2 / 4I_1^2) W_1^2$, (2)

где $I_1 = -5,585$, $I_2 = 1,262$ — параметры МТВ для Н-газа [1]; $n_{\rm M}$ — число атомов матрицы в элементарной ячейке; v_0 — объем ячейки при C=0; E_1 [K] и σ_1 [м] — параметры потенциала (Н–Н)-взаимодействия $u_{\rm H}(r)=kE_1\varphi(r/\sigma_1)$.


Рассмотрим фазовые равновесия в гидридах ИМС LaNi₅ с гексагональной структурой типа $CaCu_5$. Для системы LaNi₅ при параметрах a_0 = $5,015\cdot10^{-10}$ м, c_0 = $3,987\cdot10^{-10}$ м элементарной ячейки, содержащей $n_{\rm M}=n_{\rm IMC}=6$ атомов, ее объем v_0 = $86,84\cdot10^{-30}$ м³. В важной с практической точки зрения области α - β -переходов между неупорядоченными α - и β -фазами при интересующих нас мягких термодинамических условиях (давления до

величин $\sim 10^3$ атм), когда заполняются в основном Т-междоузлия, величина $C_s=6,7$ ($c_s=1,12$). Для коэффициента дилатации имеем $\alpha \cong 2,9 \cdot 10^{-30}$ [м³]· $n_{\rm M}/v_0=0,20$.

Комбинация $E_1\sigma_1^3$ в (2) ответствена за силовую постоянную (H-H)—взаимодействия в решетке ИМС. По оценкам для LaNi₅, она составляет 40-50% от постоянной взаимодействия свободных H-атомов в синглетных состояниях (модель для гидрида Pd [1]); мы примем $E_1\sigma_1^3 = 0.45(E_1\sigma_1^3)_{\rm Pd}$, что дает $W_1 = -2.52 \cdot 10^3$ K, $W_2 = 1.93 \cdot 10^5$ K².

Определены кривая распада гомогенной фазы системы LaNi₅-водород на α -, β -фазы и параметры критической точки α - β -перехода: температура $T_c = -0.2163W_1/(1+\alpha c_s) = 445$ K, концентрация $C_c = \theta_c \cdot C_s = 2.75$ H/LaNi₅ (где $\theta_c = 0.46/(1+0.54\alpha c_s) = 0.41$), давление H_2 $p_{H_2}^{(c)} = 104$ атм. Эти значения (экспериментальные данные о них отсутствуют) значительно лучше соответствуют виду фазовой диаграммы в этой области состояний, чем значения $T_c = 450$ K, $C_c = 3.3$ H/LaNi₅ и $p_{H_2}^{(c)} \sim 200$ атм, полученные в работе [3] в рамках грубой модели — приближения Брэгга-Вильямса для жесткой решетки ($C_c = 0.5C_s$).

Полученные на базе выражений МТВ [1] изотермы растворимости водорода в LaNi₅ ниже и выше T_c приведены на рис.1 в сравнении с экспериментальными данными о десорбции (A.Biris et.al., 1976 - значки). Температура при расчетных изотермах указана в $^{\circ}$ C.

Давление разложения β -фазы, т.е. давление на "плато" фазового перехода $\beta \rightarrow \alpha$, может быть представлено уравнением Вант-Гоффа

$$\ln p_{H_2}^{(PL)}(T) = -\frac{\Delta H_{\beta \to \alpha}}{RT} + \frac{\Delta S_{\beta \to \alpha}}{R} , \qquad (3)$$

где для энтальпии и энтропии ($\beta \rightarrow \alpha$)-перехода в интервале температур 263 К ... T_c (445 K) получены значения $\Delta H_{\beta \rightarrow \alpha} = 29,43$ кДж/моль H_2 и $\Delta S_{\beta \rightarrow \alpha} = 104,6$ Дж/(К·моль H_2). Расчетные данные о давлении разложения β -фазы LaNi₅ сравниваются на рис.2 с данными экспериментов (значки), которые проводились в ограниченных диапазонах температур.

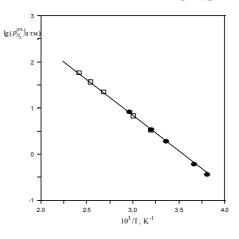


Рис. 2

Выводы

Применение модели неидеального решеточного газа Н-атомов для описания фазовых равновесий В гидридах позволяет воспроизвести основные особенности фазовых диаграмм систем ИМС-водород в области неупорядоченных α- и β-фаз. Для гидрида LaNi₅ полученные изотермы растворимости водорода в широком диапазоне давлений согласуются с экспериментальными данными. Предсказано положение критической точки α-β-перехода в гидриде LaNi₅.

Литература

1412-1414.

- 1. Marinin VS, Umerenkova KR, Shmal'ko YuF. Simulation of the α – $\beta(\alpha')$ phase equilibrium of metal hydrides within the perturbation theory. Functional materials 2003; 10(4): 607–614.
- 2. Маринин ВС. Теплофизика альтернативных энергоносителей. Харьков: Форт, 1999, Гл.2-4. 3. Волков АФ, Смирнов ЛИ, Гольцов ВА. Анализ изотерм равновесия водорода в соединении LaNi₅. Укр. физ. журн. 1988; 33(9):