ИССЛЕДОВАНИЕ ПОДВИЖНОСТИ ВОДОРОДА В СОЕДИНЕНИЯХ $HfCr_2H_x(D_x)$ СО СТРУКТУРОЙ ТИПА С14 МЕТОДОМ ЯМР

Солонинин А.В.*, Скрипов А.В., Бузлуков А.Л., Воеводина Л.С.

Институт физики металлов УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620219 Россия

* Fax: +7 (343) 374 5244 E-mail: alex.soloninin@imp.uran.ru

Введение

Исследование физических свойств гидрированных фаз Лавеса привлекает значительное внимание, что связано большим разнообразием фазовых переходов и с необычной динамикой водорода в этих системах. Информация о диффузии водорода в фазах Лавеса обобщена в обзоре [1]. Для кубических фаз Лавеса (структура типа С15) микроскопическая картина движения атомов Н понята достаточно хорошо. Одной из наиболее интересных особенностей диффузии водорода в этих системах является сосуществование двух типов перескоков атомов Н с различными характерными частотами [1]. Для гексагональных же фаз Лавеса (структура типа С14) имеется лишь отрывочная информация о диффузии водорода (в системах $ZrCr_2H_x$ [2]). Целью настоящей работы является исследование диффузии водорода в соединении HfCr₂ со структурой типа C14, а также влияния изотопического замещения H

D на параметры диффузии. Для получения этой информации проведены измерения времен спин-решеточной релаксации ядер ¹H и ²D.

Результаты и обсуждение

Соединение $HfCr_2$ приготовлено путем дуговой плавки исходных компонентов в атмосфере гелия. Рентгенографический анализ показал, что полученный интерметаллид с кристаллической структурой типа C14 однофазен и имеет параметры решетки a=5.067 Å, c=8.259 Å. Гидрирование образцов проводилось в вакуумной установке типа Сивертса. Измерения проводились на порошковых образцах $HfCr_2H_x$ и $HfCr_2D_y$, x=0.3; 0.6; 0.74; y=0.28; 0.64.

Результаты измерений скорости спинрешеточной релаксации T_1^{-1} для ядер $^1{\rm H}$ и $^2{\rm D}$ в $HfCr_2H_{0.6}$ и $HfCr_2D_y$ представлены на рис. 1 и 2

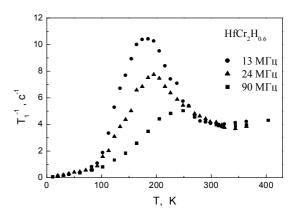


Рис. 1. Температурные зависимости скорости спин-решеточной релаксации 1 H в $HfCr_{2}H_{0.6}$ на частотах 13, 24, 90 МГц.

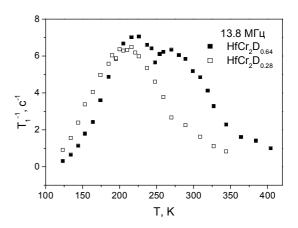


Рис. 2. Температурные зависимости скорости спин-решеточной релаксации 2D в $HfCr_2D_{0.28}$ и $HfCr_2D_{0.64}$ на частоте 13.8 $M\Gamma$ ц.

Величина T_1^{-1} в системах металл — водород обычно определяется суммой двух основных вкладов: $T_1^{-1} = T_{1\mathrm{e}}^{-1} + T_{1\mathrm{m}}^{-1}$, где $T_{1\mathrm{e}}^{-1}$ — вклад, связанный со сверхтонким взаимодействием ядер с электронами проводимости, а $T_{1\mathrm{m}}^{-1}$ — вклад, возникающий за счет модуляции атомным движением межъядерного дипольдипольного взаимодействия (и квадрупольного взаимодействия для ядер со спином I > 1/2).

Для вклада $T_{\rm 1m}^{-1}$, связанного с атомным движением, характерен зависящий от резонансной частоты максимум. Этот максимум возникает при температуре, при которой частота атомных перескоков $\tau_d^{-1}(T)$ становится приблизительно равной частоте ЯМР.

Для оценки параметров движения H(D) необходимо разделить вклады T_{1e}^{-1} и T_{1m}^{-1} в измеряемую скорость спин-решеточной релаксации. Электронный вклад измерен в области температур ниже 40 K, который хорошо описывается линейной функцией C_eT . Температурные зависимости T_{1m}^{-1} для 1 H и 2 D определялись путем вычитания соответствующих вкладов $T_{1e}^{-1}(T)$ из экспериментальных данных $T_1^{-1}(T)$. На рис. 3 представлено поведение T_{1m}^{-1} в $HfCr_2H_{0.3}$ и $HfCr_2D_{0.28}$ в зависимости от обратной температуры.

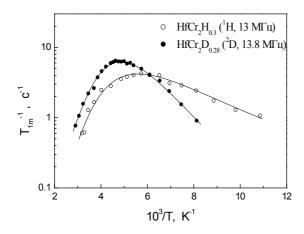


Рис. 3. Зависимости связанных с движением вкладов в скорость спин-решеточной релаксации 1 Н и 2 D в $HfCr_{2}H_{0.3}$ и $HfCr_{2}D_{0.28}$ от обратной температуры. Сплошными кривыми показаны результаты аппроксимации данных моделью БПП с гауссовым распределением энергий активации.

Для параметризации экспериментальных данных по $T_{\rm lm}^{-1}$ в $\rm HfCr_2H_x$, и $\rm HfCr_2D_{0.28}$ использовалась модель Бломбергена-Парселла-(БПП), предполагающая существование распределения τ_d^{-1} (или E_a). являются Параметрами модели значение энергии активации \overline{E}_a , ширина ΔE_{a} распределения (дисперсия) предэкспоненциальный множитель Результаты такого моделирования образцов с $x \approx 0.3$ показаны сплошными кривыми на рис. 3, а полученные значения

параметров для $HfCr_2H_x$ и $HfCr_2D_{0.28}$ приведены в таблице.

Образец	τ_{d0}^{-1}, c^{-1}	\overline{E}_a , ${ m 9B}$	Д E_a , $\ni B$
HfCr ₂ H _{0.3}	1.1×10^{12}	0.138	0.043
$HfCr_2H_{0.6}$	1.2×10^{12}	0.147	0.032
$HfCr_2H_{0.74}$	4.3×10^{11}	0.141	0.025
$HfCr_2D_{0.28}$	1.2×10^{12}	0.155	0.029

Сравнение результатов для гидрированного и дейтерированного образцов близкого состава указывает на нормальный изотопический эффект. По сравнению с $HfCr_2H_{0.3}$, для образцов с большей концентрацией водорода наблюдается рост \overline{E}_a .

Для соединения $HfCr_2D_{0.64}$ вид температурной зависимости $T_1^{-1}(T)$ можно представить в виде суперпозиции двух перекрывающихся пиков (рис. 2), что указывает на неоднородность образца по концентрации дейтерия. Для гидрированных образцов $HfCr_2H_x$ аналогичная концентрационная неоднородность проявляется только при x > 1.3, а для дейтерированных — при x > 0.5.

Выводы

Результаты измерений скорости спинрешеточной релаксации ¹H и ²D в соединениях $HfCr_2H_x$ и $HfCr_2D_v$ со структурой типа C14 показывают, что диффузионная подвижность H(D) в этих системах остается высокой вплоть до весьма низких температур. При $T \approx 200 \text{ K}$ диффузионная подвижность водорода в HfCr₂ выше, других исследованных интерметаллидах, за исключением соединения ZrCr₂. Увеличение концентрации H(D) в HfCr₂ приводит к уменьшению частоты перескоков атомов водорода. Сравнение данных для гидрированных и дейтерированных соединений близкого состава показывает, что при той же температуре частота перескоков атомов D ниже частоты перескоков атомов Н.

Литература

- 1. Skripov A.V. Hydrogen diffusion in Lavesphase compounds. Defect and Diffusion Forum. 2004; 224-225: 75-92.
- 2. Skripov A.V., Belyaev M.Yu., Stepanov A.P. NMR study of hydrogen mobility in C14- and C15-type compounds ZrCr₂H_x. Solid State Commun. 1991; 78 (10): 909-912.