ГИДРИДЫ ИНТЕРМЕТАЛЛИЧЕСКИХ СОЕДИНЕНИЙ, СОДЕРЖАЩИХ ПЛАТИНОВЫЕ МЕТАЛЛЫ

Падурец Л.Н., Кузнецов Н.Т., Шилов А.Л.

Начало химии гидридов переходных металлов было положено работой Грэма, открывшего в 1866 г. поглощение водорода палладием с образованием $PdH_{0.6}$. Прочие платиновые металлы (ПМ) в обычных условиях водород не поглощают (но в высокодисперсном состоянии адсорбируют до $0.1\ H/M$). Лишь родий при $\sim 1\ \Gamma\Pi a$ образует гидрид $RhH_{\sim 1}$.

Данные исследований взаимодействия ПМ-содержащих ИМС (интерметаллических соединений) с водородом суммированы в табл., где приведены предельные составы гидридов, полученные при давлении водорода до 10 МПа.

полученные при давлении водорода до то типа.			
YRu ₂ H _{3.3}		YPdH _{3.1}	
LaRu ₂ H _{4.5}	LaRh ₂ H _{4.9}		
CeRu ₂ H _{5.2}			
NdRu ₂ H _{5.5}			
SmRu ₂ H _{4.6}			
	EuRh ₂ H _{5.5}	$EuPdH_{\sim 1}$	
		EuPd ₂ H _{1.7}	
GdRu ₂ H _{3.7}	$GdRh_2H_{3.3}$	$Gd_7Pd_3H_{10}$	
		$Gd_3Pd_2H_5$	
DyRu ₂ H _{~3}	$DyRh_2H_{\sim 3}$		
HoRu ₂ H _{4.2}			HoPtH ₂
ErRu ₂ H _{3.6}			
		YbPdH _{2.7}	
ThRu ₂ H ₅		Th_2PdH_6	
		ThPdH ₄	
		Ti ₂ PdH ₂	
		Zr ₂ PdH _{2.7}	
	$Hf_2RhH_{2.2}$	Hf ₂ PdH _{1.9}	

Такие ИМС, как ScRu₂, NdIr₂, LuPd, GdPd₂, LaPt₂, LaPt₅, ZrPd₂ в этих условиях водород не поглощают или поглощают незначительно $(0.1\text{-}0.3\ \text{H/моль})$. LaPt₅ образует гидриды при $20\text{-}105\ \text{M}\Pi a$.

Отметим интересное обстоятельство: сплавы, каждый из компонентов которых является гидридообразующим элементом (РЗЭ, Ti, Pd), поглощают водорода меньше, чем сумма отдельно взятых металлов или вовсе его не поглощают (ср. также $LiPtH_{0.66}$ и $LiPdH_{0.82}$). Рутений же, в чистом виде не поглощающий

водород вплоть до 7 ГПа, в составе ИМС активно «вовлекается» в гидрирование.

Известны и гидриды типа $Ca(Sr)_2Ir(Rh)H_5$, $Ca(Sr)_2RuH_6$, $Eu(Yb)_2RuH_6$, Eu_2IrH_5 . Но они не являются фазами внедрения (соответствующие ИМС не существуют). Эти соединения получены взаимодействием бинарных RH_2 с ПМ в водороде при высоких температурах.

Взаимодействие водорода с тройными сплавами, содержащими ПМ, изучено слабо. Показано, что замена 20% Ni на Pd в LaNi₅ уменьшает сорбционную емкость вдвое и повышает давлении диссоциации гидрида (при 298 K) с 0.25 до 7 МПа. Авторами получены и исследованы гидриды Ru-содержащих сплавов: SmFe_{2-x}Ru_xH₋₄, SmCo_{2-x}Ru_xH₋₄, SmCo_{1.8}Ru_{1.2}H_{4.5}, SmNi_{0.85}Ru_{1.15}H₄, SmNi_{1.4}Ru_{1.6}H_{3.3}, ErFe_{2-x}Ru_xH₃₋₅, ErCo_{3-x}Ru_xH₃₋₅.

Исследования кристаллической структуры гидридов ИМС, содержащих ПМ, показывают, что в большинстве случаев гидрирование сопровождается расширением простым элементарной ячейки ИМС с увеличением ее объема dV на 10-30%. Иногда наблюдается искажение исходной структуры (LaRh₂, GdRh₂, Ti_2Pd , $SmCo(Ni)_{3-x}Ru_x$) или она испытывает полиморфное превращение (NdRu₂, SmRu₂). Тройные сплавы самария со структурами фаз Лавеса при гидрировании аморфизуются. При гидрировании YbPd, EuRh₂, CeRu₂ происходит изменение валентности РЗЭ: с 3 на 2 для Уb и Еи, с 4 на 3 для Се. Для этих гидридов отмечены особо высокие величины dV.

Данные по теплотам образования ограничены гидридами на основе RRu_2 (-dH = 46-65 kJ/mol H_2), RRh_2 (-dH = 44-49 kJ/mol H_2) и YbPd (-dH = 87 kJ/mol H_2).

Термическая устойчивость исследована для гидридов Ru-содержащих бинарных и тройных сплавов. Часть гидридов десорбирует водород полностью обратимо. Другие же (на основе LaRu₂, NdRu₂, некоторых тройных фаз Лавеса) после десорбции (полной или частичной) водорода распадаются на бинарные гидриды РЗЭ и фазы, обогащенные d-металлом, т.е. претерпевают гидрогенолиз.