HYDRIDES OF INTERMETALLIC COMPOUNDS CONTAINING PLATINUM-GROUP METALS

Padurets L.N., Kuznetsov N.T., Shilov A.L.*

Institute of General and Inorganic Chemistry of RAS Leninskii prospekt 31, Moscow, 119991, Russia

*Fax: ++7 (095) 9541279 E-mail: ashilov@rambler.ru

It is well known that chemistry of metal hydrides starts from the work of Graham. In 1866 he discovered the absorption of hydrogen by palladium resulting in $PdH_{0.6}$. Another platinum-group metals (PM) do not absorb hydrogen at moderate conditions (although in highly dispersed state they can absorb up to 0.1H/M). Only Rh forms hydride RhH_{-1} at ca. 1 GPa.

Investigations of interaction of binary intermetallic compounds (IMCs), containing PM, with hydrogen are summarized in the Table. Limiting hydrogen contents obtained at hydrogen

pressure up to 10 MPa are presented.

pressure up to 10 WH a are presented.			
YRu ₂ H _{3.3}		YPdH _{3.1}	
LaRu ₂ H _{4.5}	LaRh ₂ H _{4.9}		
CeRu ₂ H _{5.2}			
NdRu ₂ H _{5.5}			
SmRu ₂ H _{4.6}			
	EuRh ₂ H _{5.5}	$EuPdH_{\sim 1}$	
		$EuPd_2H_{1.7}$	
GdRu ₂ H _{3.7}	GdRh ₂ H _{3.3}	Gd ₇ Pd ₃ H ₁₀	
		$Gd_3Pd_2H_5$	
DyRu ₂ H _{~3}	$DyRh_2H_{\sim 3}$		
HoRu ₂ H _{4.2}			HoPtH ₂
ErRu ₂ H _{3.6}			
		YbPdH _{2.7}	
ThRu ₂ H ₅		Th_2PdH_6	
		ThPdH ₄	
		Ti ₂ PdH ₂	
		$Zr_2PdH_{2.7}$	
	$Hf_2RhH_{2.2}$	$Hf_2PdH_{1.9}$	

Such IMCs as ScRu₂, NdIr₂, LuPd, GdPd₂, LaPt₂, LaPt₅, and ZrPd₂ do not absorb hydrogen under these conditions or absorb only 0.1-0.3 H/mol). LaPt₅ forms hydrides at 20-105 MPa.

An interesting circumstance may be noted: alloys of metals, each of them is hydride-forming (RE, Ti, Pd), absorb less hydrogen than the sum of corresponding pure metals or do not absorb hydrogen at all (sf. also LiPtH_{0.66} and LiPdH_{0.82}). In other hand, pure Ru does not absorb hydrogen even at 7 GPa, but it is actively "entrained" in hydriding being the component of IMCs.

Such hydrides as Ca(Sr)₂Ir(Rh)H₅, Ca(Sr)₂RuH₆, Eu(Yb)₂RuH₆, Eu₂IrH₅ are also known. However, they are not the insertion phases, obtained by hydrogen interaction with IMCs (corresponding IMCs do not exist at all). These compounds can be obtained by the reaction of binary hydrides RH₂ with dispersed PM in hydrogen at high temperatures.

Interaction of ternary alloys containing PM with hydrogen is relatively poorly studied. It was shown that the substitution of 20% Ni by Pd in LaNi₅ decreases the absorption capacity twice and increases the hydrogen dissociation pressure (at 298 K) from 0.25 to 7 MPa. Hydrides of ternary Ru-containing alloys were obtained and studied by authors: SmFe_{2-x}Ru_xH $_{\sim 4}$, SmCo_{2-x}Ru_xH $_{\sim 4}$, SmCo_{1.8}Ru_{1.2}H_{4.5}, SmNi_{0.85}Ru_{1.15}H₄, SmNi_{1.4}Ru_{1.6}H_{3.3}, ErFe_{2-x}Ru_xH $_{3-5}$, ErCo_{3-x}Ru_xH $_{3.5-4}$.

The results of X-ray investigations of hydrides can be summarized as follow. In most cases hydriding results in simple expansion of the metallic matrix with the volume increase (dV) in the range 10-30%. For LaRh₂, GdRh₂, Ti₂Pd, SmCo(Ni)_{3-x}Ru_x hydriding is accompanied by the distortion of the initial crystal structure. In the case of NdRu₂ and SmRu₂ hydrogen induces the polymorphic MgCu₂-to-MgZn₂ transformation. For ternary Sm-based Laves-phases the hydrogeninduced amorphyzation occurs. The formation of YbPd-, EuRh₂-, and CeRu₂-hydrides accompanied by the lowering of RE valence state: from 3 to 2 for Yb and Eu, from 4 to 3 for Ce. For these hydrides dV-values are extremely high.

Data concerning the values of the heat of formation are limited by hydrides based on RERu₂ (-dH = 46-65 kJ/mol H₂), RERh₂ (-dH = 44-49 kJ/mol H₂), and YbPd (-dH = 87 kJ/mol H₂).

Thermal stability was studied for hydrides of binary and ternary Ru-containing alloys. Part of these hydrides desorbs hydrogen reversibly (in one- or multi-stage manner). Another hydrides (based on LaRu₂, NdRu₂, and some ternary Lavesphases), after the desorption (complete or partial) of hydrogen, decompose into binary REH₂ and phases enriched by d-metals (hydrogenolysis process).